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ABSTRACT

Proton computed tomography (pCT) is an image modality that will im-

prove treatment planning for patients receiving proton radiation therapy

compared with the current techniques, which are based on X-ray CT. Im-

ages are reconstructed in pCT by solving a large and sparse system of linear

equations. The size of the system necessitates matrix-partitioning and par-

allel reconstruction algorithms to be implemented across some sort of clus-

ter computing architecture. The prototypical algorithm to solve the pCT

system is the algebraic reconstruction technique (ART) that has been mod-

ified into parallel versions called block-iterative-projection (BIP) methods

and string-averaging-projection (SAP) methods. General purpose graphics

processing units (GPGPUs) have hundreds of stream processors for mas-

sively parallel calculations. A GPGPU cluster is a set of nodes, with each

node containing a set of GPGPUs. This thesis describes a proton simulator

that was developed to generate realistic pCT data sets. Simulated data sets

were used to compare the performance of a BIP implementation against a

SAP implementation on a single GPGPU with the data stored in a sparse

matrix structure called the compressed sparse row (CSR) format. Both

BIP and SAP algorithms allow for parallel computation by creating row

partitions of the pCT linear system. The difference between these two gen-

eral classes of algorithms is that BIP permits parallel computations within

the row partitions yet sequential computations between the row partitions,

whereas SAP permits parallel computations between the row partitions yet

sequential computations within the row partitions. This thesis also intro-

duces a general partitioning scheme to be applied to a GPGPU cluster to

achieve a pure parallel ART algorithm while providing a framework for col-
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umn partitioning to the pCT system, as well as show sparse visualization

patterns that can be found via specified ordering of the equations within

the matrix.
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1. INTRODUCTION

1.1 Proton Radiation Therapy and the Motivation for Proton Computed

Tomography

Proton radiation therapy has emerged as a way to treat deep-seated tumors that

has advantages over X-ray radiation therapy. Proton therapy was first proposed by

Robert Wilson in 1946 [25] while working on the design of the Harvard Cyclotron

Laboratory and the first patients were treated in 1954 at the Lawrence Berkeley Lab-

oratory (LBL), California[23]. In 1961 scientists at the Harvard Cyclotron Laboratory

in collaboration with the Massachusetts General Hospital realized the advantage of

stopping the proton beam at the edge of the tumor by introducing Bragg peak treat-

ments as opposed to LBL’s “shoot-through” style treatment. The first hospital-based

proton treatment facility was installed at Loma Linda University Medical Center

(LLUMC) in California [22], dozens of others have now been constructed throughout

the world, and by 2008 over 60,000 patients had received proton therapy [16]. Heavy

charged particles, including protons, have finite ranges with a Bragg peak just before

the end so that they can accurately apply a higher dose at depth.

In order to target the Bragg peak of the proton beam at the precise location of the

tumor, the distribution of proton relative stopping powers (RSP) within the patient

must be well known prior to treatment. X-ray computed tomography (CT) scanning
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of the patient is the current method used to obtain the RSP. X-ray CT computes the

RSP by reconstructing the linear X-ray attenuation coefficients, given in Hounsfield

units using an empirically derived calibration curve. Due to this conversion, there is

a 3% to 20% range error, which may result in an under-dose to the tumor volume or

an over-dose to the surrounding healthy tissue.

Proton computed tomography (pCT) is an imaging modality that tracks protons

as they traverse objects to be imaged (Figure 1.1). The blue arrow represents the

path of a proton. The cube object represents the calorimeter, which measures the

energy loss of a proton. The four square-grids represent the detector planes of the

scanner, which measure the location and direction in which the proton is moving.

From this information, one proton history forms one linear equation. Running the

whole scan of the patient establishes a linear system in which the pCT method of

directly reconstructing the RSP produces more accurate proton range prediction than

X-ray CT. Accurate range prediction is important, for example, for sparing critical

normal structures.

1.2 General Purpose Graphics Processing Units

General purpose graphics processing units (GPGPUs) were originally intended to

process the massively parallel calculations that are inherent in computer graphics.

GPGPUs are now becoming more commonly used to perform a wide range of cal-

culations, particularly in medical imaging. The GPGPU assigns a grid of tens of

thousands of threads to operate on a problem, such as applying textures to individ-

ual pixels, and utilizes those threads in parallel across hundreds of stream processors
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Fig. 1.1: Proton CT concept. Image from [17].

to enhance performance. Each stream processor is a single-instruction in-order exe-

cution unit. Figure 1.2 shows a picture of the architecture of a single GPGPU. There

are 30 symmetric-multiprocessors, each with 8 stream processors so that the GPGPU

in Figure 1.2 has 512 total stream processors. A GPGPU program requires copying

data from CPU host memory to the GPGPU device memory, performing algorithms

on the data using kernel functions, producing output, and copying the results back to

the CPU memory. Synchronizing the symmetric multi-processors is one of the major

challenges to GPGPU computing that was addressed in this work.

The GPGPU exploits the parallelism of a computation by launching kernel func-

tions. Each time a kernel function is launched, a grid is formed. Structured within

the grid are thread-blocks, and within the thread-blocks are threads. Every thread

executes the same code, which is specified in the kernel functions. According to

user-defined configuration parameters, the GPGPU grid can either be one or two

3



Fig. 1.2: GPGPU architecture consisting of a group of 30 symmetric multiprocessors (SM), each with 8

stream processors (SP). Each SM has its own local shared memory that its SPs can access, and

the GPGPU device has global memory that all SPs can access.

dimensional, and the thread-blocks can be either one, two, or three dimensional.

Choosing the dimensions of the grid and thread-blocks should be based on the na-

ture of the computation that the kernel is to solve. With a one dimensional grid

the thread-blocks are indexed in one dimension, and with a two dimensional grid the

thread-blocks are indexed in two dimensions. With one dimensional thread-blocks

the threads are indexed in one dimension, with two dimensional thread-blocks the

threads are indexed in two dimensions, and with three dimensional thread-blocks the

threads are indexed in three dimensions.

Kirk’s and Hwu’s text on GPGPU processing discusses the history of GPGPU

computing, GPGPU architecture, and the CUDA library which allows programming

on Nvidia Corporation GPGPUs [11]. The book also discusses how to enhance the
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Fig. 1.3: A grid consisting of 16 voxels, each with its index and RSP (r). This two-dimensional image

represents the cross-section of a three-dimensional object.

performance of GPGPU processing based on some real-world problems.

1.3 Linear System for Proton Computed Tomography

A pCT image is reconstructed by solving a very large system of approximately 100

million linear equations with 10 million variables for a head-size object. The solution

provides the RSP of every partition (voxel) of the object. In order to solve such a

system in a reasonable time frame so that pCT can be practical for clinical use, a par-

allel projection algorithm must be implemented across a multi-processor computing

system.

The first step in developing the pCT system of equations is to partition the object

into a three dimensional grid where each unit of the grid is called a voxel to mean a

volume pixel, and each voxel is numbered with its own index value.

For simplicity, consider a cross-section of the object that is made up of 16 voxels
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Fig. 1.4: The path of a proton through the grid and formation of a single linear equation of the pCT

system. The row of the A-Matrix is: 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0, the entry in the b-vector is:

r3+r7+r11+r15 (assuming constant chord length).

(see Figure 1.3). The RSP of each voxel is a material property that provides infor-

mation of how much energy the proton loses in that voxel. For example, bone will

have a higher RSP value than soft tissue.

The unknown RSP values inside the object make up the vector x ∈ R
n in the system

Ax = b,

where n is the number of voxels in the object. The A matrix and b vector are

obtained as follows: During a pCT scan, incoming protons of a preset initial energy

(typically 200 MeV) traverse the object from many direction between 0 and 360

degrees. The most likely paths (MLP) of the protons inside the object are calculated

using a Bayesian approach based on the entry and exit locations of the protons at

the object boundaries [19]. The protons stop within an energy detector, which is

calibrated to determine the traversed water-equivalent path lengths (WEPL). The ith

6



row of matrix A has the dimension n (i.e. the number of voxels). If the jth voxel of

the object was intersected by the MLP of the ith proton, the matrix element aij will

be given the value of the estimated intersection length; otherwise aij = 0. Suppose,

for a complete scan, m protons have traversed the object of n voxels; then A ∈ R
m×n.

The m-dimensional vector b contains the estimated WEPL values of the m protons.

Figure 1.4 shows how a single row of matrix A is set up using the MLP information

of that the proton corresponding to that row.

Formally, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

The elements of A, aij := { estimated intersection length if the ith proton inter-

sected the jth voxel, 0 otherwise }

x := the image vector of RSP values for all voxels to in the reconstructed object

b := the WEPL vector of the proton MLPs.

Note, that aij = 1 was assumed throughout this thesis for simplicity, which does

not affect the validity of the results obtained.

1.4 Outline of Thesis

With the overall goal of providing research to advance the pCT project towards clin-

ical use, the following objectives were accomplished: a simulator was developed to

generate realistic pCT data, which is described in Chapter 2. Chapter 3 analyzes

7



the performance of two classes of parallel algorithms on a single GPGPU using data

generated by the proton simulator. Chapter 4 explores a method to perform a par-

allel ART algorithm on the pCT system. Chapter 5, the final chapter, outlines an

approach to partition the sparse linear system of pCT reconstruction across an entire

GPGPU cluster using a sorting scheme for the proton histories. It also discusses

future directions. The Appendix contains additional detail of the random number

generator used by the proton simulator, contains code segments for the simulator and

the GPGPU recontruction code, and shows the specifications of the GPGPU device

used.
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2. PROTON SIMULATOR FOR PROTON COMPUTED TOMOGRAPHY DATA

2.1 Chapter Introduction

The pCT project is a large effort of several institutions (pCT Collaboration) and

data is needed for testing reconstruction algorithms and their implementation on

GPGPU hardware before pCT can be used clinically. The proton simulator produced

by this research and presented at the IEEE Nuclear Science Symposium And Med-

ical Imaging Conference in Anaheim 2012 can generate realistic data sets for this

purpose [26]. The simulator can generate data sets that are made available for the

entire pCT Collaboration in order to test different reconstruction algorithms and their

implementation.

2.2 Phantoms

The simulator developed in this work uses a general class of phantoms called called

a non-homogeneous ellipse object (NEO) that was inspired by Herman’s digital head

phantom [5]. The NEO can be modified by adding different RSP regions represent-

ing anatomical features of a human head. In previous work, the high energy physics

simulation tool GEANT4 [1] was used to generate data sets for pCT testing [17].

Generation of these data sets with GEANT4 has been complex and time-consuming

therefore, a simulator that can quickly generate high-quality data sets will be bene-
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(a) (b)

Fig. 2.1: Non-homogeneous Ellipse Objects (NEOs): (a) NEO 1, (b) NEO 2. The difference between these

two phantoms is that NEO 2 includes an outer skin layer.

ficial in developing a clinically practical reconstruction methodology.

In this work, two NEO phantom versions, NEO 1 and NEO 2 shown in Figure 2.1

(a) and (b), respectively, were used to generate simulation examples. Both phantoms

are bounded by an outer ellipse with major and minor axis length of 180 mm and

140 mm, respectively, and have inner regions representing the cerebral ventricles filled

with cerebro-spinal fluid (RSP of 0.9), brain tissue (RSP of 1.04), an air-filled frontal

sinus (RSP of 0.0), and compact skull bone (RSP of 1.6). NEO 2 also includes an

outer skin layer.

The results presented in this thesis were produced with a 2D version of the NEO

phantoms. The 2D simulation examples used 1 mm x 1 mm pixels and a reconstruc-

tion area of 200 mm x 160 mm, consistent with the cross-sectional size of an adult

human head, resulting in 32,000 pixels. For assigning RSP values for each pixel, one

can choose between three methods. One should note that each point in the elliptical

regions of the NEO has a defined RSP value. The center-point method selects the

10



RSP at the center of each pixel. The corner-point averaging method uses the average

of the RSP values at the four corners of the pixel, providing a smoother transition

between different RSP regions than the center-point method. The weighted-area av-

eraging method provides the smoothest transition between two different RSP regions

by setting the boundary pixel values equal to the sum of each region’s RSP times

the fraction of its area with respect to the pixel area. The simulation examples in

this thesis used the corner-point averaging method. Figures 2.2 and 2.3 provide an

illustration of the RSP selection methods. Figure 2.2 shows an image of the NEO

phantom in color with an enlarged pixel on the boundary of brain matter and one

of the cerebral ventricle regions. Figure 2.3 shows the three different methods for

selecting the RSP for each voxel. Figure 2.3(a) is for the center-point method and

it shows that the RSP in the center, the blue region, will be assigned to that pixel.

Figure 2.3(b) is for the corner-point-averaging method and it shows that the RSP at

the four corners will be averaged together, two from the blue region, and two from the

green region, to assign the value to that pixel. Figure 2.3(c) is for the weighted-area-

averaging method. The RSP for that pixel is calulated as follows: RSP = (A1*RSP1

+ A2*RSP2)/2, where A1 is the area of the green region or cerebral ventricle, RSP1 is

the RSP for the cerebral ventricle, A2 is the area of the blue region, or brain matter,

and RSP2 is the RSP for the brain matter.

The simulator can also create 3D phantoms by stacking a user-defined number of

slices with user-defined height of 2D phantoms, which results in an elliptical cylinder.

Stacking 200 1mm-slices of the phantom (for example) results in an elliptical cylinder

within a reconstruction volume of 200x200x160 = 6.4 million voxels, where each voxel

11



Fig. 2.2: NEO phantom in color. The black region is the region outside the reconstruction space, the white

color repseresents air, which surrounds the outer ellipse and also lies within the outer skull region.

The blue color represents brain matter, the green color represents the cerebral ventricles, and the

yellow color is for pixels that lie on intersecting regions of different RSP. The image shows an

enlarged yellow pixel.
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(a) (b) (c)

Fig. 2.3: Selecting the RSP for the enlarged pixel that lies on the boundary of brain matter (blue) and one

of the cerebral ventricles (green): (a)center-point method, (b)corner-point-averaging method, (c)

weighted-area-averaging method.

is 1 mm3, creating data volumes consistent with the clinical setting of a human head.

2.3 Simulated Proton Paths

The path of a proton traversing the object to be scanned can be characterized at

a specified depth by its lateral and vertical coordinates and lateral and vertical di-

rections relative to the direction of the proton beam. The scattering in the lateral

and vertical directions can be considered as two independent statistical processes so

that the scattering in vertical direction can be excluded from simulations with a 2D

phantoms. With the general direction of the proton beam as the u-axis, and the

t-axis to represent the lateral displacement, the location and direction of a proton at

any depth u1 is given by the 2D vector,

y1 =







t1

θ1






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Fig. 2.4: Scattering geometry in the u-t plane. Image from [17].

where t1 is the lateral displacement and θ1 is the angular deviation relative to the

u-axis. Figure 2.4 shows a proton path traversing an object located in the u − t

plane. The entry and exit vectors are displayed at their appropriate depth, respec-

tively. The elements of the exit vector are distributed according to a joint-normal

probability density function with mean zero.

The simulator generates parallel proton paths that are transported from a virtual

point source at infinite distance into the reconstruction space and then into the phan-

tom. The entry points into the reconstruction volume are uniformly distributed over

a user-selected interval along the horizontal t-axis of the beam-specific coordinate

system (Figure 2.5) for the 2D simulation and along the horizontal axis and vertical

v-axis for the 3D simulation. In the simulation examples, the initial displacements
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were uniformly distributed over the interval [-125 mm, 125 mm] along the t-axis. A

cone beam option is planned a future version of the simulator.

Once the entry point into the phantom is determined, the exit point is calculated

by projecting a straight-line path with the addition of a lateral and angular displace-

ment to model multiple Coulomb scattering (MCS) [12]. The actual proton path

connects the entry and exit points and then, outside the phantom, the path continues

as a straight line in exit direction. The simulator allows for either straight-line or

cubic-spline paths between entry and exit points. The simulation examples of this

thesis used straight-line paths.

The cubic spline path is calculated as follows:

A 3rd order polynomial q(x) for which

q(x1) = y1q(x2) = y2q
′(x1) = k1q

′(x2) = k2

is

q(x) = (1− t)y1 + ty2 + t(1− t)(a(1− t) + bt)

where

t =
x− x1

x2 − x1

and

a = k1(x2 − x1)− (y2 − y1)
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Fig. 2.5: Proton simulator geometry. A randomly generated proton path passing through the digital phan-

tom in the reconstruction space is shown. The t, v, u axes are the beam-specific coordinate system

and the x, y, z axes are the coordinates of the global reconstruction space.

b = −k2(x2 − x1) + (y2 − y1).

A Markov process to model an even more realistic path is planned for a future version

of the simulator.

Proton paths are directed from a user-specified number of projection angles with

a user-defined angular spacing interval. The simulation examples used 180 projection

angles with 2-degree spacing intervals, covering a full circle with a series of parallel

2D beams. For each projection, the proton paths are generated in the ut-plane of the

beam-specific coordinate system.

The random variables describing lateral and angular displacement at the proton

exit are approximately distributed according to a bivariate random normal distribu-

tion described by Highland’s formalism of MCS [8] with parameters recommended by

the Particle Data Group [14]. For the 2D mode of this simulator, a bivariate normal

distribution is used to generate random number pairs to represent the exiting lateral

displacement and angular deviation due to MCS of the proton within the phantom.
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For the 3D mode, the random exit parameters are independently calculated for the

horiozontal u− t plane and the vertical u− v plane, respectively.

For the bivariate normal distribution, let the two random variables be X and Y ,

then the probability density function is

f(x, y) =
1

2πσxσy

√

(1− ρ2)
exp

(

−
1

2(1− ρ2)
[

(x− µx)
2

σ2
x

+
(y − µy)

2

σ2
y

−
2ρ(x− µx)(y − µy)

σxσy

])

,

where

ρ = corr(X, Y ) =
vXY

σxy

,

vXY = cov(X, Y ),

µ =

[

µxµy

]

Σ =







σ2
x σxy

σxy σ2
y







The simulator has its own bivariate normal random number generator (BNRNG)

described in the Appendix A. The BNRNG begins with two uniform random variables

generated using the rand() function in the C standard library. It then converts those

two uniform random variables to two standard independent random normals using

the Marsaglia Polar-Method (modification of Box-Muller Method) [13],[3]. The two

independent normals are then converted into a pair of bivariate normals using the

covariance matrix.
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2.4 Mathematical Formulation of the Reconstruction Problem

The elements of a given row of the A-matrix are the chord lengths of a given path

through the pixels/voxels it intersected. In the simulator, the element ai,j is the chord

length of the ith path through the jth pixel/voxel. For simplicity, the simulation ex-

amples used a constant chord length of the pixel size (1 mm). Using an estimate for

actual chord length or mean chord length could result in a more accurate reconstruc-

tion, though doing so would require more computation and thus increase the time

complexity [18].

The path of the proton is generated in the t − v − u coordinate system and then

mapped to the stationary x − y − z coordinate system using a Givens rotational

matrix. The simulator then takes the x, y, z location of the path and intersects the

path with the voxels of the reconstruction space. Each proton path will intersect very

few of the voxels in the entire reconstruction space, so the vast majority of the entries

in each row will be zero. To identify every voxel intersected by a proton path, the

simulator uses a method similar to the Digital Difference Analyzer method [5].

The noiseless WEPL value of the ith proton is calculated forming the inner product

of the ith row vector with the actual-solution-vector of the phantom. The simulator

also has a feature that enables added WEPL noise. To do this, the noiseless WEPL

value is converted into an equivalent energy value of the exiting proton using the

NIST PSTAR database [15]. Next, a random energy value is drawn from a normal

distribution with mean equal to the noiseless energy and a standard deviation cal-

culated using Tschalar’s theory of energy straggling [24]. This noisy energy value is

then converted back into a noisy WEPL value.
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Fig. 2.6: An example of converting a dense matrix to compressed sparse row format.

The number of voxels of the reconstruction volume defines the number of columns

in the A-matrix. A reconstruction volume of 200 mm x 160 mm x 200 mm bounds

the typical adult human head. A 3D simulation with a reconstruction volume of

6.4 million voxels and 64 million proton histories creates the system Ax = b with

A ∈ R
64M×6.4M , b ∈ R

64M . The simulator writes the A-matrix to a file in a format

that can be easily read into compressed sparse row (CSR) matrix format [2] taking

approximately 100 GB of disk space (Figure 2.6). Storing the A-matrix in dense form

would require over 1 peta-byte of disk space (1 peta = 1015). CSR format is the

most appropriate sparse structure to store the pCT system because as each history

is recorded, a new row of the system is added, one-by-one. The data generated from

a 2D simulation follows the same format.
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2.5 Chapter Summary

The motivation for simulated data is clear and at this point there exists a proton

simulator to generate high-quality pCT data sets quickly and at low cost, saving

the expense of performing test pCT runs in the laboratory. Data distribution is an

important aspect of the collaborative effort, and this simulation code will be available

for free use for all groups involved in the pCT project. The customizeable parameters

of the simulations allow other experts to generate data and perform further analysis,

[26].
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3. ALGORITHM COMPARISON AND GPGPU IMPLEMENTATION

3.1 Chapter Introduction

The system Ax = b is too large to be solved by a direct method such as Gaussian

elimination. The number of columns of A equals the number of voxels to be recon-

structed, which can be of the order of 10 million columns for a 3D head-sized object.

To get a precise image, the voxels have to be relatively small. Using a voxel size of

1 mm x 1 mm x 1 mm to partition the reconstruction space of 256 mm x 256 mm

x 150 mm will result in a system with just under 10 million columns. The number

of rows should be about 10 times larger than the number of columns so that every

voxel will get intersected by on average 10 protons, which will be necessary to get a

relativley noise-free image. Therefore, the matrix A will have around 100 million rows

by 10 million columns, which is in fact much too large for direct or explicit solution

methods.

3.2 Algebraic Reconstruction Technique (ART)

The algebraic reconstruction technique (ART) is an iterative method to solve sparse

systems in which there are many zeros in the A matrix, which is the case in the pCT

problem as will be discussed later. First published by Kaczmarz in 1937, [10], ART

applies successive orthogonal projections onto convex sets - SOPOCS, the sets being
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Fig. 3.1: ART: successive orthogonal projections onto the hyperplanes where each hyperplane represents a

linear constraint. In this figure, the hyperplanes denoted by black lines are indexed from 1 to 8.

The x0 indicates the start point and the blue arrows denote the projections.

the hyperplanes

Hi = {
〈

ai, x
〉

= bi : x ∈ R
n, i = 1, 2, . . . ,m}.

SOPOCS “spirals” the solution into a subspace of smaller residual error as can be

seen in Figure 3.1.

Given the control sequence {i(k)}∞k=0, where i(k) = k mod m + 1, the ART algo-

rithm is as follows:

Initialize x0 ∈ R
n arbitrarily.

For k = 0, 1, . . .
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xk+1 = xk + λk

bi(k) −

〈

ai(k), xk

〉

||ai(k)||2
ai(k)

where {λ}∞k=0 is a sequence of user-determined relaxation parameters.

Given the vast size of the pCT linear system of equations, using ART would re-

quire too much time and memory on a single computer making it impractical for

clinical use. Block-iterative-projection (BIP) and string-averaging-projection (SAP)

algorithms allow for the system to be partitioned into sets of hyperplanes (rows)

called blocks or strings, respectively, so that much of the calculations can be done in

parallel and less memory is required. BIP algorithms perform parallel computation

within a block and require sequential processing between blocks. On the “flip” side,

SAP algorithms perform parallel computation between strings and require sequential

computation within strings.

3.3 String Averaging Projection Algorithms

Figure 3.2 provides a graphical representation of how SAP algorithms project the

iterative solutions into regions of lower residual error. The figure shows how the

current iterate xk is projected sequentially onto three different strings of hyperplanes

(H1, H2, H6; H4, H6; H6). The resulting three points, forming the vertices of the

blue triangle, are then combined to form the new iterate xk+1.

String-avergaing-projection (SAP) Algorithm:
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Fig. 3.2: Illustration of SAP [17].
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x0 arbitrary, given xk, for each t = 1, 2, ...,M set y0 = xk and calculate, for i =

0, 1, ...,m(t)− 1,

yi+1 = yi + λk

bi −

〈

ai, yi
〉

||ai||2
ai

where {λk}
∞

k=0 is a sequence of user-defined relaxation parameters and let yt = ym(t)

for each t = 1, 2, ...,M . Then calculate the next iterate by

xk+1 =
M
∑

t=1

wty
t,

where the wts are weights such that
∑M

t=1wt = 1.

Figure 3.3 further illustrates the functionality of the SAP algorithms with a flow

chart. The current iterate xk is sent to all strings where it is projected sequentially

onto all hyperplanes of the string. The endpoints of each string projection are aver-

aged to get the new iterate xk+1.

On the GPGPU, each time a kernel function is launched (or called), it opens a new

grid of blocks of thread processes, as specified by the configuration parameters. The

code in the kernel function then specifies how the threads operate on the data. The

implementation of SAP on the GPGPUs in this research used three kernel functions
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Fig. 3.3: An illustration of the flow of SAP algorithms.

(refer to Appendix C, Listing 3.5, for the SAP CUDA code). The first kernel assigns

the current x-iterate to each string. The second kernel performs the projections. In

this kernel, a thread process of the GPGPU grid is assigned to a set of hyperplanes

(string), and each thread process performs row projections and then writes the result

of the last projection into temporary device memory. Thus, each string requires a

temporary memory equal to n - the number of columns of the system. As the number

of string partitions, M , increases, the number of rows within each string decreases

and so the time complexity of the calculation is reduced in this projection step of

the kernel. This demonstrates the inverse relationship between time performance and

memory complexity. The third kernel averages the updates of each string into the

new x-iterate.
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3.3.1 Reconstruction Results

Figures 3.4 through 3.6 show examples of reconstructions obtained from simulated

data without added WEPL noise. All reconstructions in this subsection were per-

formed with 20 cycles of iterations through all proton histories using the SAP algo-

rithm with 100 string partitions. Figure 3.4 illustrates the 2D reconstruction of two

slightly different head phantoms, NEO 1 and NEO 2. The reconstructions clearly

show the different anatomical regions, characterized by different RSP values, for both

phantom reconstructions.

Figure 3.5 analyzes the dependence of the image quality on the number of proton

histories entering the reconstruction area, expressed as multiples of the number of

pixels (32,000 pixels). The resulting images show decreasing image noise with in-

creasing number of histories. The reason for the image noise, which is present despite

the noiseless WEPL values, is the use of constant chord lengths in the reconstruction.

Obviously, the noise introduced by inaccurate chord lengths can be compensated by

a larger number of proton histories.

Figure 3.6 demonstrates the effects of different relaxation parameters on image

quality. There is a decrease of image noise with an increase in λ, however, the effect

of increasing λ on noise reduction appears to saturate between λ = 0.1 and λ = 0.5.

Figures 3.7 and 3.8 demonstrate the effects of different numbers of histories and

relaxation parameters on the quantitative accuracy of RSP values using line profiles

through the two ventricles of the NEO 1 phantom. Given a sufficient number of

histories and choice of an adequate relaxation parameter, accurate reconstruction of

the RSP values was obtained.
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(a) (b)

(c) (d)

Fig. 3.4: Reconstructions (n = 200× 160 pixels) of the NEO 1 and NEO 2 phantoms (λ = 0.1). (a) NEO 1

phantom, (b) reconstruction of NEO 1 phantom, (c) NEO 2 phantom, (d) reconstruction of NEO 2

phantom.
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(a) (b)

(c) (d)

Fig. 3.5: Reconstruction of the NEO 1 phantom with different number of histories m, expressed as multiples

of the number of pixels n ( λ = 0.1). (a) m = n, (b) m = 5n, (c) m = 10n, (d) m = 20n.
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(a) (b)

(c) (d)

Fig. 3.6: Reconstructions of the NEO 1 phantom using different relaxation parameters λ. (a) λ = 0.01, (b)

λ = 0.1, (c) λ = 0.2, (d) λ = 0.5.
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Fig. 3.7: Line profiles through the ventricles of the NEO 1 phantom for different relaxation parameters λ:

NEO 1 (blue), λ = 0.01 (green), λ = 0.1 (red), λ = 0.2 (cyan), λ = 0.5 (magenta).

Fig. 3.8: Line profiles through the ventricles of the NEO 1 phantom using different numbers of histories:

NEO 1 (blue), m = n (cyan), m = 5n (red), m = 10n (green), m = 20n (magenta).
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3.3.2 Different String Sizes

Figures 3.9 and 3.10 analyze the impact of the string partition sizes on the image

quality. Figure 3.9 displays the reconstructed image after the first 10 cycles using

a constant relaxation parameter of λ=0.1. Figure 3.9 (a) is the NEO 1 phantom;

Figures 3.9 (b) - (f) show the reconstructed images using 100, 200, 400, 800, and

1000 string partitions, respectively.

Figure 3.10 displays the reconstructed image after the first 10 cycles adjusting the

relaxation parameter λ to be proportional to the number of string partitions, starting

with λ = 0.1 for 100 string partitions. Figure 3.10 (a) is the NEO 1 phantom;

Figures 3.10 (b) - (f) show the reconstructed images using 100, 200, 400, 800, and

1000 string partitions, respectively. A comparison between the Figures 3.9 and 3.10

reveals the significance of keeping the relaxation parameter proportional to the string

partition size in a given range.

Figure 3.11 shows a plot of the relative error,
∑n

j=1 |x
∗

j − xn
j |/

∑n

j=1 |x
∗

j |, between

the actual solution x∗-vector for the NEO 1 phantom and the solutions for the SAP

implementations varying the number of string partitions using a constant relaxation

parameter of λ=0.1. The Figure shows that increasing the number of string partitions

without changing the relaxation parameter leads to slower convergence.

Figure 3.12 shows a plot of the relative error for the SAP implementations varying

the number of string partitions with proportional relaxation parameters. The Figure

shows that keeping the relaxation parameters proportional to the number of string

sizes leads to minimal differences in the convergence.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.9: Reconstruction images after 10 cycles of SAP using a constant relaxation parameter of λ=0.1: (a)

original NEO 1 phantom (b) 100 string partitions (c) 200 string partitions (d) 400 string partitions

(e) 800 string partitions (f) 1000 string partitions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.10: Reconstruction images after 10 cycles of SAP: (a) original NEO 1 phantom (b) 100 string partitions

and λ=0.1 (c) 200 string partitions and λ=0.2 (d) 400 string partitions and λ=0.4 (e) 800 string

partitions and λ=0.8 (f) 1000 string partitions and λ=1.0.

34



Fig. 3.11: Plot of the relative error percent for SAP using varying the number of string partitions with

constant λ=0.1 for cycles 1 to 10. The red line is for the 100 string partitions, the green line is

for the 200 string partitions, the blue line is for the 400 string partitions, the cyan line is for the

800 string partitions, and the black line is for the 1000 string partitions.
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Fig. 3.12: Plot of the relative error percent for SAP using varying the number of string partitions with

proportional relaxation parameters for cycles 1 to 10. The red line is for the 100 string partitions

with λ=0.1, the green line is for the 200 string partitions with λ=0.2, the blue line is for the 400

string partitions with λ=0.4, the cyan line is for the 800 string partitions with λ=0.8, and the

black line is for the 1000 string partitions with λ=1.0.
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3.3.3 Execution Times for Different Numbers of String Partitions

Tables 3.1 - 3.5 show the execution times using the Tesla 2090 GPGPU for SAP. For

all kernel functions, the grid used was one-dimensional. The execution was performed

with either 1, 10, 50, 100, 1,000, or 32,768 threads. When using between 1 and 100

threads there was only one thread-block of one dimension. For the 1,000 thread

executions, there were 10 one-dimensional thread-blocks, each with 100 threads. For

the implementation which utilized 32,768 threads, there was a one dimensional grid

of 64 thread-blocks, each containing 512 threads.

The columns of Tables 3.1 - 3.5 indicate the execution times for different number

of threads used. When using less than 400 string partitions, the speedup achieved

by increasing the number of GPGPU thread processes was negligible as reflected in

Tables 3.1 and 3.2. For 400 string partitions (Table 3.3) increasing the number of

thread processes to 1,000 does achieve speedup. However, beyond utilization of 1,000

threads no further speedup was seen. This can be explained by the fact that the

GPGPU card has 512 core processors and its resources reaches full capacity between

100 threads and 1,000 threads. Table 3.4 shows that using 800 string partitions leads

to greater speedup than 400 string partitions. Table 3.5 shows that 1,000 string

partitions results in the maximum speedup.

3.4 Block Iterative Projection Algorithms

As described earlier, BIP algorithms allow for parallelism within the row partitions

referred to as blocks, and then require sequential updates after each block iteration.

In more precise mathematical notation:
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Tab. 3.1: Execution times for the SAP reconstructions in milli-seconds with 100 string partitions for cycles

1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 8760 10070 9250 9060 7630 6480

2 13070 11940 12700 11210 8450 7800

3 16260 15490 16350 14190 9430 8270

4 18480 18880 18780 17800 9810 9870

5 21810 21060 21140 19750 11050 10010

6 24900 24920 24270 22610 12810 11520

7 27820 28250 27950 25380 13720 11730

8 31350 30240 30470 29020 14080 12980

9 33360 34110 33620 31010 15100 14390

10 36460 37620 37360 33860 17020 15510
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Tab. 3.2: Execution times for the SAP reconstructions in milli-seconds with 200 string partititions for cycles

1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 8670 7690 7790 7120 7090 8570

2 9230 9500 8770 8540 7580 10280

3 11810 10740 10360 10020 7720 12560

4 12540 12220 12800 12080 9550 15040

5 14310 13360 15100 13640 9090 17400

6 16540 15040 15970 15010 9810 18950

7 17760 17370 16810 15730 10410 21760

8 20400 18820 19300 17170 11870 24020

9 22280 20940 19850 19470 13420 26850

10 24390 21170 22250 19910 12410 27950
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Tab. 3.3: Execution times for the SAP reconstructions in milli-seconds with 400 string partitions for cycles

1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 7360 7020 7290 6920 7740 11690

2 9230 7270 7410 7910 8430 16530

3 10480 9330 9360 7790 8660 20760

4 11960 9540 9130 9700 8580 24680

5 12190 9760 10040 10640 9360 30360

6 13420 10810 11580 10010 10030 34660

7 15350 12580 11710 11070 12200 39170

8 17070 13370 13620 11490 12310 43880

9 18040 13660 14110 13040 12290 49430

10 18630 13980 14240 13550 13010 54690
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Tab. 3.4: Execution times for the SAP reconstructions in milli-seconds with 800 string partitions for cycels

1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 6780 6450 6820 7100 6860 15340

2 8090 7830 6680 7570 9470 25380

3 9550 7170 7620 8100 10010 34870

4 9880 7390 7730 8490 11100 44510

5 9740 8390 9010 8750 11960 54550

6 10630 8970 8770 9490 12800 64050

7 11990 8630 9430 10150 13950 72960

8 13240 9170 9850 10920 15880 81670

9 13240 10870 11290 11410 17700 91700

10 14630 9990 11620 11160 18980 102000
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Tab. 3.5: Execution times for the SAP reconstructions in milli-seconds with 1000 string partitions for cycles

1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 6230 6820 7120 6230 7390 17480

2 7790 7630 6590 7580 9240 29510

3 7680 7010 8200 7370 10770 42550

4 8990 7060 8400 8770 12480 54240

5 9730 8310 8690 9130 13640 65040

6 9620 8960 9140 9510 15560 76770

7 10320 8110 8860 9930 16560 89640

8 11550 9040 9430 11650 17430 101410

9 12350 8840 11230 12270 18940 112630

10 13000 10330 10290 12780 21490 124510
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Block-iterative-projection (BIP) Algorithm:

xk+1 = xk + λk

∑

i∈It(k)

wk(i)

bi −

〈

ai, xk

〉

||ai||2
ai

where I = {1, 2, . . . ,m}; I is partitioned into M blocks such that I = I1∪I2∪· · ·∪IM ;

{t(k)}∞k=0 is a control sequence over the set {1, 2, . . . ,M} of block indices; wk are

weight vectors of the form wk =
∑

i∈It(k)
wk(i)ei where ei is the ith standard basis

vector; {λk}
∞

k=0 is a sequence of user-defined relaxation parameters.

One type of BIP algorithm is called Ordered subsets simultaneous algebraic re-

construction technique (OS-SART). OS-SART was used for the BIP recontructions

in this thesis.

OS-SART Algorithm:

For j = 1, .., n

xk+1
j = xk

j + λk

1
∑

i∈I(k) a
i
j

∑

i∈It(k)

bi− < ai, xk >
∑n

l=1 a
i
l

aij

where {λk}
∞

k=0 is a sequence of user-defined relaxation parameters.

Figure 3.13 illustrates the flow of BIP algorithms. Only the first block is assigned

the iterate xk, and then each row in the first block performs the projection using that

iterate, and then sums up each row’s projection. The sum of each row’s projection

is sent to the next block, in which that block will repeat the process and so on until

the last block finishes its projections and outputs the next iterate.
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Fig. 3.13: An illustration of the flow of BIP algorithms.

3.4.1 Pre-Sorting the Matrix Partitions

As each proton history is recorded and a path is calculated, then a row of the system is

formed. Therefore these rows can be “stacked” one after the other so that the matrix

data naturally flows into CSR matrix format. This data structure fits efficiently with

the parallel row projections that are performed within a block. Each thread can be

assigned to project on the nonzeros within its row based on the starting and ending

indexes of the nonzero array which are provided in the row-pointer. However, the

next step within the block is to sum up all the scaled rows by taking the sum of each

column. Since the column indexes are unsorted, each thread assigned to perform the

sum of a column must search the entire column-index array for a matching index

before adding, which is grossly inefficient. An efficient implementation of the BIP

methods requires a more sophisticated sparse matrix format that combines CSR and
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compressed sparse column (CSC) so that the column summing operations can run

efficiently. This requires pre-sorting the sections of the nonzero array defined by their

block sizes with respect to the column indexes of each block’s section in the array, then

recording the column-sorted-order of the nonzeros, and generating a column-pointer.

Suppose the matrix is





































0 0 a0 0 0 0 0 a1 a2

0 a3 0 0 0 0 0 0 0

0 0 0 0 a4 0 0 a5 0

0 0 0 a6 a7 a8 0 0 0

a9 0 0 0 0 0 0 0 0

0 a10 0 a11 0 0 0 0 a12





































and suppose block length of 3, then this matrix with 6 rows will form two blocks.

The CSR format for block 0 is

nonZero =

[

a0 a1 a2 a3 a4 a5

]

rowIndex =

[

0 0 0 1 2 2

]

columnIndex =

[

2 7 8 1 4 7

]

rowPointer =

[

0 3 4 6

]

and after the column sorting, the data is arranged as follows

colInd =

[

1 2 4 7 7 8

]
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rowIndex =

[

1 0 2 0 2 0

]

nonZero =

[

a3 a0 a4 a1 a5 a2

]

colInd =

[

0 0 1 2 2 3 3 3 5 6

]

columnSortedOrder =

[

3 0 4 1 5 2

]

.

For block 1, the data in CSR form is

nonZero =

[

a6 a7 a8 a9 a10 a11 a12

]

rowIndex =

[

3 3 3 4 5 5 5

]

columnIndex =

[

3 4 5 0 1 3 8

]

rowPointer =

[

0 3 4 7

]

and after the column sorting, the data is arranged as follows

colInd =

[

0 1 3 3 4 5 8

]

rowIndex =

[

4 5 3 5 3 3 5

]

nonZero =

[

a9 a10 a6 a11 a7 a8a12

]
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colInd =

[

0 1 1 3 5 6 7 7 7 8

]

columnSortedOrder =

[

9 10 6 11 7 8 12

]

.

The implememtation of the BIP method, specifically OS-SART, on the GPGPU in

this thesis uses three kernel functions. The first kernel performs the projections and

writes each update to temporary memory. The next kernel uses the threads of the

grid to rearrange the data into column sorted format. Then the third kernel performs

the column sum update. Every block in sequence executes the three kernels until the

last block finishes and writes the next x-iterate to host memory (refer to Appendix

C, Listing 3.4).

3.4.2 Ordered Subsets Simultaneous Algebraic Reconstruction Technique

Figures 3.14 shows reconstructed images after the first four cycles of the NEO 1 phan-

tom using the OS-SART algorithm with λ = 0.1, a zero vector as the intitial iterate.

Figure 3.14 (a) shows the original NEO 1 phantom. Figure 3.14 (b) shows the recon-

struction images with block size of 5,000. Figure 3.14 (c) shows the reconstruction

images with block size of 10,000. Figure 3.14 (d) shows the reconstruction images

with block size of 20,000. Figure 3.14 (e) shows the reconstruction images with block

size of 40,000. Figure 3.14 (f) shows the reconstruction images with block size of

80,000. As the block size is increased beyond 10,000 as in Figures 3.14 (c) - (f),

information gets leaked beyond the boundary of the outer ellipse. Therefore, given

the size of this data set, block sizes beyond 10,000 will not be optimal in regards to
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image quality.

Figure 3.15 shows a relative error plot of the OS-SART algorithm, varying the

block sizes while keeping the relaxation parameter constant at λ=0.1. Similar to the

analysis conducted on the SAP algorithm, increasing the block size while keeping the

relaxation parameter constant leads to slower convergence. For faster convergence,

the relaxation parameter should be proportional to block size.

3.4.3 Execution Times Using Different Block Sizes

Tables 3.6 through 3.10 display the execution times for the reconstuctions of dif-

ferent block sizes using the Tesla M2090 GPGPU (the specifications of the Tesla

M2090 GPGPU are listed in Appendix D, Listing 4.6). The Tables list the times in

milli-seconds of the reconstructions after each iteration and for a different number

of GPGPU thread processes assigned to the kernel functions. The Tables indicate

that regardless of the block sizes used – 5,000, 10,000, 20,000, 40,000, 80,000 – the

timing performance remained relatively the same. Since the GPGPU used has around

500 core processors, increasing block size to numbers of the stated amounts will not

speed up performance. At block size of 5,000 the resources of the GPGPU are at full

capacity.

On the furthest right column, only one thread is used. Using one thread, the GPGPU

acts only as a single processor machine, and the timing results indicate the resulting

poor performance. Using more threads than 500 does not improve speed up signifi-

cantly because the GPGPGU has only 500 core processors.

As the number of threads increases from the 1 to 1,000, the problem scales well.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.14: Reconstruction images after 4 cycles of OS-SART with a constant relaxation parameter of λ=0.1:

(a) original NEO 1 phantom (b) 5,000 block size (c) 10,000 block size (d) 20,000 block size (e)

40,000 block size (f) 80,000 block size.
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Fig. 3.15: Plot of the relative error percent for OS-SART varying the block sizes with constant λ=0.1 for

cycles 1 to 10. The red line is for the 5,000 block size, the green line is for the 10,000 block size,

the blue line is for the 20,000 block size, the cyan line is for the 40,000 block size, and the black

line is for the 80,000 block size.
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Tab. 3.6: Execution times for the OS-SART reconstructions in milli-seconds with block size of 5,000 rows for

iterations 1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 4260 4640 5420 6900 16250 47940

2 6080 6280 8480 10990 29560 90970

3 5870 7160 10190 13170 41420 132890

4 6810 7380 12080 17160 54800 175070

5 8930 8500 14140 19580 67430 217090

6 8550 10290 15990 22780 79190 259640

7 11050 10810 18140 27270 91630 301630

8 11120 11960 20260 29890 104370 343940

9 12250 12110 21850 33630 116960 385970

10 11910 13690 23970 35780 129720 429050

The problem does not scale well between the threads being increased beyond 1,000

threads. The Tables presented in this research show that the speedup is independent

of the block size. The data suggests that a block size between 1 and 5,000 will be

more optimal to image quality. Finding the optimal block size for timing performance

requires further analysis.

3.5 Chapter Summary

This chapter described the ART algorithm in mathematical notation, also providing

a visual image of how the solution x-vector projects orthogonally into a subspace

of lower residual error. Next, the chapter discussed how to implement SAP on a
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Tab. 3.7: Execution times for the OS-SART reconstructions in milli-seconds with block size of 10,000 rows

for iterations 1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 4280 5340 6430 6660 16690 51610

2 5400 6190 8860 10590 30530 96370

3 7130 6720 10520 13660 42900 141740

4 7020 7670 12210 17770 56570 186960

5 7840 8920 14300 21110 69370 231820

6 9860 9180 16190 23090 82350 276550

7 10680 11060 18220 26970 95740 322010

8 10310 11330 20510 29870 108810 367160

9 11890 13290 22040 34240 120320 412400

10 13420 14140 23950 37560 134680 458160
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Tab. 3.8: Execution times for the OS-SART reconstructions in milli-seconds with block size of 20,000 rows

for iterations 1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 5160 5470 5870 6760 16580 53660

2 6210 6200 8110 10290 29770 101450

3 6440 7350 10050 13440 44140 149950

4 8200 7530 11930 16690 57240 197470

5 8960 9580 13760 19860 69180 245230

6 9140 10310 15560 24440 83460 293390

7 10830 11440 17520 27920 96720 341200

8 10900 11260 20110 31170 110000 388740

9 11820 13120 21830 33600 123250 437230

10 12850 14380 23950 37360 135640 484480
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Tab. 3.9: Execution times for the OS-SART reconstructions in milli-seconds with block size of 40,000 rows

for iterations 1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 4590 4580 5890 6720 17420 55390

2 6280 6480 8100 10260 31150 105370

3 7210 7450 10500 14530 43660 154380

4 7190 8670 12490 16750 57710 204460

5 8200 9340 14480 20800 70750 253080

6 9190 10460 16710 23510 83730 302590

7 10830 12720 18530 26900 97160 352200

8 10750 12200 19800 30240 110460 401440

9 11460 13410 21680 34070 123750 451270

10 12450 14460 26030 36970 136770 501010
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Tab. 3.10: Execution times for the OS-SART reconstructions in milli-seconds with block size of 80,000 rows

for iterations 1 through 10 using a different number of GPGPU threads, tg, in the kernel functions.

cycle tg=32768 tg=1000 tg=100 tg=50 tg=10 tg=1

1 4610 4990 6670 7900 18880 55460

2 5200 6550 7700 11300 32770 105140

3 7550 7310 10770 13670 46400 155020

4 7320 8700 11990 18030 59160 204560

5 8190 8900 14760 20250 72740 254330

6 9340 10300 15750 23850 86260 303780

7 10250 10780 17850 28250 99230 352920

8 12180 11490 20920 31570 112430 402490

9 12260 13500 21970 34040 125280 452130

10 13860 14260 24920 38310 138780 501460
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single GPGPU. The next section discussed how to implement OS-SART on a single

GPGPU which requires an intermediary sorting step to get the data into a form that

can be processed by all BIP methods. This chapter revealed that the finely tuned

parameters within each algorithm, SAP or OS-SART, were more important to the

reconstruction results than the actual choice between the two.
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4. PARALLELIZING ART FOR GPGPU IMPLEMENTATION

4.1 Chapter Introduction

Reconstruction of pCT images on a GPGPU cluster is an ongoing study. As described

earlier in this thesis, each node of the cluster has a set of GPGPUs. The cluster used

in this thesis, for example, has seven nodes, with each node containing either two

or three GPGPUs. To find an optimal reconstruction for clinical pCT, reconstruc-

tion on a single node must be analyzed before testing implementations on an entire

cluster. However, given the different algorithms to choose from, the different types

of GPGPUs, and the experimental data, the optimal choice becomes very complex.

This leads to a pure parallel implementation of ART and the possibility of a future

study on hybrid BIP-SAP algorithms (hybrid in this context means an intelligent

combination of the two classes of algorithms). The goal of this chapter is to provide

an introduction into a parallel version of ART to be implemented on a GPGPU cluster.

4.2 Parallel ART

Given xk, the sequential ART algorithm calculates xk+1 as follows:

xk+1 = xk + wk(bi(k)− ai(k)xk)ai(k)
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with wk = λk/||a
i(k)||2. Subsequently, xk+2 can be expressed as a function of xk+1:

xk+2 = xk+1 + wk+1(bi(k+1) − ai(k+1)xk+1)ai(k+1)

Substituting for xk+1 and manipulating algebraically yields:

= xk+1 + wk+1(bi(k+1) − ai(k+1)(xk + wk(bi(k) − ai(k)xk)ai(k)))ai(k+1)

= xk+1 + wk+1(bi(k+1) − ai(k+1)xk − ai(k+1)wk(bi(k) − ai(k)xk)ai(k))ai(k+1)

= xk+1 + wk+1(bi(k+1) − ai(k+1)xk − wk(bi(k) − ai(k)xk)ai(k+1)ai(k))ai(k+1)

Suppose the rows ai(k+1), ai(k) are orthogonal (independent) so that ai(k+1)ai(k) = 0,

then

xk+2 = xk+1 + wk+1(bi(k+1) − ai(k+1)xk)ai(k+1)

= xk + wk(bi(k) − ai(k)xk)ai(k) + wk+1(bi(k+1) − ai(k+1)xk)ai(k+1)

In ART, calculation of the current row projection depends on the previous row pro-

jection. However, as shown above, given the independence condition, ai(k+1)ai(k) = 0,

xk+2 does not depend on the previous row projection, x(k+1), allowing for parallelism.

Grouping independent rows leads to the question regarding the difference between

inter-independence versus intra-independence.

4.2.1 Inter-Independent Parallel ART Partitions

Suppose there are two disjoint partitons of the A-matrix, where a partition is a set

of row vectors of the pCT system. These partitions are not inter-independent from

one another if both partitions have a matching column index inside each’s respective

set of rows for which there is a non-zero matrix element at that column index. If

58



there is no matching column index holding a non-zero between the two partitions,

then these two partitions are inter-independent from one another when performing

the ART algorithm. Note that two rows are independent or orthogonal to one another

if they have no matching column index holding a nonzero because their dot product

is zero. Therefore, performing ART in parallel on both partitions and then adding

the two update solution vectors yields the same result as the fully-sequential ART

algorithm. If there are M partitions in which each partition is inter-independent from

every other partition, then ART can be performed on all the partitions in parallel as

well. Inter-independent parallel ART would follow the same GPGPU implementation

as string-averaging algorithms without the string weights.

4.2.2 Intra-Independent Parallel ART Partitions

Suppose there is a single partition of matrix A, and for all of the rows in this partition,

there is no matching column index for which a nonzero occurs, or in other words every

row in the partition is orthogonal to every other row in that partition. Then, using

the same starting x-vector, the ART projection can be performed on each row in

parallel and then adding each row’s scaled update together gives the same result as

fully sequential ART. Intra-independent parallel ART would follow the same GPGPU

implementation as block iterative algorithms without the block weighting. In OS-

SART for instance, the dependency violations are weighted down by dividing by the

column sums (A dependency violation is the term used to describe when there exists

a matching column index between two rows for which there is a nonzero).
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Fig. 4.1: Two proton histories with an idealized parallel path. The proton with high vertical displacement,

p1, traverses the upper part of the cylinder object, the proton with low vertical displacement, p2,

traverses the lower part. Note that proton histories do not intersect each other.

4.3 Assigning Proton Histories to Inter-Independent Partitions

Figure 4.1 shows two proton histories traversing a cylinder object. Cutting out proton

histories with high angular deviations from the pCT system will ensure that proton

histories travel nearly parallel to the u-axis, regardless of the angle along the gantry

from which the proton is projected. This is because the gantry rotates around the

center of the reconstruction space along the ut-plane, so that every history is near

perpendicular to the v-axis. Therefore, proton histories with high intitial vertical

displacement will traverse the upper part of the object, and histories with low vertical

displacement will traverse the lower part. This idealized view is more complicated

in reality because, due to MCS, protons will deviate from their initial path due to

scattering inside the object.
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4.3.1 Column Partitioning

Parallel ART and the BIP and SAP algorithms provide a framework for row parti-

tioning to a general matrix system. However, by observing the geometry in which the

specific pCT matrix system is created, column partitioning schemes may be added to

the existing row partitioning algorithms. Column partitioning involves parallel pro-

cessors solving for different sections of the object, thereby, each one solving for only

a subset of x ∈ R
n. Therefore each processor responsible for a smaller column-space.

This will improve the memory complexity of the existing ART-based algorithms. Sup-

pose there are two partitions, the first with histories with high vertical displacement,

and the other with low vertical displacement. Then these partions will be inter-

independent from one another. The histories from the first partition will all traverse

the upper part of the object so that none of them will intersect any voxel of the lower

part of the object. The histories from the other partition only intersect the lower

part. Therefore, by doing the simple voxel assignment in which the lower part of

the reconstruction space is assigned the lower-valued indexes, the next higher part

of the reconstruction space gets the next higher sequence of voxel indexes, and so

on, until the highest part of the reconstruction space receives the highest sequence of

voxel indexes as in Figure 4.2. Note that the vertical v-axis describing the vertical

displacement of the proton paths will always be alligned with the vertical z-axis of

the stationary reconstruction space.

Using l to index the x-direction, m for the y-direction, and n for the z-direction of

the reconstruction space, then the one dimensional voxel index, v, of the reconstruc-

tion space which becomes the column index within the pCT linear system is
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Fig. 4.2: Voxel indexing illustration

v(l,m, n) = npxpy +mpx + l

where px is the number of partitions in the x-direction of the reconstruction space

and py is the number of partitions in the y-direction. Given a v(l,m, n), inverting to

return (l,m, n) requires integer division and modular arithmetic:

n = v/(pxpy)

m = [vmod(pxpy)]/px

l = [vmod(pxpy)]modpx.

Figure 4.3 shows proton histories assigned to partitions based on their vertical

displacement. Assuming that the angular displacement in the vertical direction is

zero for argument sake, then the histories can be grouped into bins according to

their vertical displacement. Then by assigning the histories in the bins to the matrix
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Fig. 4.3: When scattering is neglected, partitions can be assigned to sections of the object.

partitions, the partitions will be inter-independent from one another, so that they can

be processed in parallel, and also, each partition of rows (proton histories) will only

have nonzero column entries in the section of the object for which the bin is assigned.

This methodology combines row and column partioning so that the partitions will

be of a more manageable size for the nodes within the GPGPU cluster architecture

to process. Each GPGPU of each node can solve for sections (vertical slices) of the

object independently without communicating their individual updates until the end

of the reconstruction.

4.3.2 How to Deal with Overlap

The scattering of the protons inside the object will lead to some displacement. There-

fore proton histories assigned to neighboring bins may cross the bin boundary as

illustrated in Figure 4.4. With proper bin height corresponding to the removal of

proton histories beyond a vertical angular displacement threshold, then it can be as-
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Fig. 4.4: Proton overlap between bins: Protons in bin i will overlap into bin i− 1 and bin i+1 but will not

overlap into bin i− 2 or bin i+ 2.

sured that the histories in bin i overlap only into the adjacent neighboring bins, bin

i− 1 and bin i+ 1. Also, the only other histories that will overlap into bin i will be

histories assigned to either bin i− 1 or bin i+ 1. Therefore, a partition composed of

histories from bin i will be inter-independent from a partition composed of histories

from bin i + 2 as well as bin i − 2. Therefore, a shuffling technique can be used to

implement inter-independent parallel ART between GPGPUs of a cluster. The shuf-

fling technique is a two-step process with both steps illustrated in Figures 4.5 and

4.6, respectively. Given a set of GPGPUs, the first GPGPU can be assigned to the

first bin partition, the second GPGPU to the third bin partition, the third GPGPU

to the fifth, etc., until all GPGPUs have been assigned to the odd bin partitions. In

the first step of the shuffling process, the GPGPUs all process the odd numbered bins

in parallel using the initial iterate, as in Figure 4.5. Then, in the second step, shown

in Figure 4.6, the GPGPUs shift their assignment to the adjacent bins so that each
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Fig. 4.5: In doing step 1 of the inter-independent parallel ART, only partitions of odd numbered bins are

processed.

GPGPU processes even-numbered bin partitions in parallel, using the intermediary

iterate that each GPGPU calculated during step one. The set of GPGPUs performing

both steps completes one cycle of inter-independent parallel ART.

4.4 Chapter Summary

This chapter presented several of the major issues regarding the implementation of

the parallel ART algorithm. The difference between inter-independent and intra-

independent ART partitions was discussed and a method of assigning proton histories

to partitions to allow for inter-independent parallel ART was illustrated. Column

partitioning to the pCT system was introduced as well as a binning technique to deal

with overlap between proton histories.

65



Fig. 4.6: In doing step 2 of the inter-independent parallel ART, only partitions of even numbered bins are

processed.
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5. SUMMARY, CONCLUSION, AND FUTURE DIRECTIONS

This thesis discussed several essential topics in pCT reconstruction. Chapter 2 de-

scribed a proton simulator that was developed in this research to generate realistic

pCT data sets to be used in the analysis of parallel reconstruction algorithms on

GPGPU clusters. Chapter 3 provided a thorough analysis of SAP and BIP recon-

structions on data generated by the proton simulator. Chapter 4 explored methods

to implement parallel ART on a GPGPU cluster. What follows in this chapter are

several future directions for pCT research.

5.1 The Simulator as a Tool for Future pCT Research

Fine-tuning and optimizing parameters of pCT reconstruction from pCT data that

requires a rapid turn-around of pCT reconstructions with realistic data sets. The

simulator presented in this work allows for pCT data sets to be created through a

variety of options using digital head phantoms and transport parameters for protons.

It models a clinical setting in which virtual proton beams are directed from multiple

angles simulating a 360-degree virtual proton gantry. Other features of the simulator,

such as the ability to add noise or to use different path options with different accuracy,

will be beneficial in systematically analyzing error sources of pCT reconstruction. In

the future, it is forseen that this simulator will use more complex head phantoms that
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provide more realistic anatomical features varying in dimension. Recently, such a

realistic head phantom was created by a LLUMC PhD student, Valentina Giacometti

[7].

5.2 Comparison Between Pure Parallel ART Against BIP and SAP Algorithms

The question of whether or not pure parallel ART outperforms the BIP and SAP

algorithms with respect to time complexity and image quality remains uncertain.

Intuitively, since pure parallel ART performs all row projections with no dependency

violations between rows, parallel ART should produce higher quality images with

fewer cycles than the BIP and SAP images because there is no weighting. The

better performance of pure parallel ART, however, must offset the extra preprocessing

necessary to create intra and/or inter independent partitions. Using the simulator to

generate thousands of different data sets on a variety of combinations of phantoms

and simulation parameters, and then running parallel ART algorithms against BIP

and SAP algorithms will demonstrate the advantages or lack of advantages of pure

parallel ART.

5.3 Sparse Matrix Visualization Patterns

In the future, recognizing patterns within the linear system may allow the improve-

ment of clinical efficiency of pCT. Figures 5.1 and 5.2, as example, show a 2-D visual-

ization of two different orderings of the same subset of proton histories. All histories

were projected from angle 1 along the virtual gantry with linear paths through the

NEO phantom. This is a subset of 1000 histories. The vertical axis represents the
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Fig. 5.1: Sparse matrix visualization image of a 2-dimensional data set generated by the proton simulator

ordered by the temporal sequence of which they were created.

row index. The horizontal axis represents the location of each intersected voxel in

the non-zero sparse matrix array (the data was stored in CSR format). In the entire

data set, 35,560,000 voxels were intersected. For each proton history, represented

by a horizontal row of the recangular area or system, there are only two blue dots

plotted, one for the minimum and one for the maximum column index, respectively.

This creates a picture that the human eye can interpret without misrepresenting the

data while displaying the intended concept.

In Figure 5.1, the histories are ordered by the temporal sequence of which they

were created in the simulator, whereas in Figure 5.2, the histories have been sorted

by their lateral displacement along the t-axis in the ut-plane. The image that uses

sequential ordering demonstrates a completely chaotic system in which the blue dots

(representing the non-zero elements of the matrix) are randomly scattered throughout

the matrix. The image resulting from sorting by lateral displacement shows a linear

and diagonal structure to the matrix that can be exploited for faster computation
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Fig. 5.2: Sparse matrix visualization image of a 2-dimensional data set generated by the proton simulator

ordered by lateral displacement along the t-axis of the ut-plane.

and improved storage, though the cost of sorting must be taken into consideration.

Exploiting the sparse linear patterns of the system could be beneficial the ideas of

parallel ART.

5.4 Matrix Partioning across a GPGPU Cluster

The data sets produced by the simulator are written to disk memory in a format

that can be read into data structures that will later be used in the implementation of

new and existing parallel projection algorithms across GPGPU clusters. Figure 5.3

shows the conceptual design of a typical GPGPU cluster as a collection of nodes,

with each node comprised of multiple GPGPUs. In the Figure, there are M total

nodes connected by a bus within the single cluster, and each node connects to a set

of GPGPUs.

A further step is to develop a general A-matrix partitioning scheme that will assign

these partitions to nodes within a cluster and to GPGPUs within a node matching
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Fig. 5.3: Conceptual design of a GPGPU cluster with M nodes. Each node has Ti GPUs.

the structure inherent in the spatial and temporal acquisition scheme of the pCT

system and the physical nature of the data to the internal architecture of the GPGPU

cluster efficiently. This will allow rendering as many GPGPUs active as possible and

minimizing the need of data transfer between different nodes. Figure 5.4 illustrates

a general assignment scheme of matrix partitions to GPGPUs in a GPGPU cluster.

The matrix A is partitioned into M sub-matrices, and then each of the M sub-matrices

is further partitioned into sub-partitions. The expected outcome of future research

is a GPGPU-based reconstruction scheme that optimizes pCT reconstruction with

respect to image quality, reconstruction time, and hardware expenses.

5.5 Final Conclusion

To further advance science, the pCT project is an ongoing collaborative effort involv-

ing several universities and a major proton treatment center (LLUMC). The pCT

simulator, including source code and documentation, will be made readily available
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Fig. 5.4: General concept of matrix parititioning and assignment to GPGPUs in a GPGPU cluster.

to other researchers (physicists and engineers) interested in the development of pCT.

The majority of the simulator and reconstruction codes can be found in Appendices B

and C of this thesis. At this point, the GPGPU reconstruction code has been written

in CUDA, all simulation code has been written in C++, the graphics package utilizes

the OpenGL libraries, and all data analysis code has been written in C++, MatLab,

and SciLab. A reconstruction using the ART algorithm has yet to be implemented

on the data generated by the simulator developed in this research. When this task

were accomplished, then experts will be able to make better judgement on whether

or not a pure parallel version of ART should be pursued. Scientific and mathematical

intuition leads to the conclusion that the ART algorithm will outperform the BIP

and SAP algorithms with respect to image quality though no empirical evidence ac-

tually supports this premise. It is important to take into accoutn the added sorting

costs to make the data suitable for pure parallel ART. Also, the implementation of

either a hybrid SAP-BIP algorithm or a pure parallel ART across a GPGPU cluster
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is an important future goal. It is likely that the visualization of sparse pCT matrix

patterns will lead to better utilization of sorting the pCT system matrix.
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APPENDIX A

RANDOM NUMBER GENERATOR
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The lateral displacement of the entry of a proton into an object along the t-axis

is drawn from a uniform distribution on the closed interval [-125,125] and the entry

angle is equal to the angle of the proton beam. The lateral and angular displacement

for the exit of a proton follow a joint normal distribution. The program will use

its own joint normal random number generator to obtain values for the lateral and

angular displacement for the exit of a proton. The random numbers are generated

by the following process:

Let U =







u

v






, u, v follow N(0,1), let A ∈ R

2x2 be symmetric, then to obtain a
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= E
[

(au+ bv)2
]

= E
[

a2u2 + 2abuv + b2v2
]

= a2E[u2] + 2abE[uv] + b2E[v2], E[u2] = 1 = E[v2], E[uv] = 0 because u, v are inde-

pendent. And so

E[xx] = a2 + b2 = σ2
1, (1)

Similarly E[yy] = b2 + c2 = σ2
2, (2)

E[xy] = E
[

[

u v

]


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b
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
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b c
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
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]

= E
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abu2 + b2uv + acuv + bcv2
]

abE[u2] + b2E[uv] + acE[uv] + bcE[v2]

Therefore

E[xy] = ab+ bc = σ12 (3)

Equations (1),(2),(3) form a system of 3 nonlinear equations of three variables each,

let x = (a, b, c) so that
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F (x) =















F1

F2

F3















=















a2 + b2 − σ2
1 = 0

b2 + c2 − σ2
2 = 0

ab+ bc− σ12 = 0















Newton’s nonlinear iterative method will be applied to solve for x = (a, b, c)

x0 = initial guess

for k = 0, 1, 2, ...

solve Jf (xk)sk = −F (xk) for sk

xk+1 = xk + sk

end

The Jacobian of F ,
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.

Setting Js = F results in a 3x3 linear system easily solvable using Cramer’s method.

To generate the pair of standard normal random variables, this program generates

2 uniform random variables U, V in the interval [-1,1] and then uses the Marsaglia

Polar Method (modification of Box-Muller Method) to convert the uniform random

variables U, V into the standard normal random variables Z1, Z2:
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Z1 = U
√

−2 ln s
s

Z2 = V
√

−2 ln s
s

s = U2 + V 2

if s = 0 or s ≥ 1 then start over.

The variances of the lateral and angular displacement, σ1, σ2, and the covariance,

σ12, are functions of the exit depth of the proton, and these values will be drawn

from a look-up table, precalculated for water using Highland’s scattering formalism

[1] with parameters recommended by the Particle Data Group [2].
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APPENDIX B

PROTON SIMULATOR CODE
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Listing 2.1: neoCode

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗PHANTOM∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

c l a s s E l l i p s e {

pub l i c :

E l l i p s e ( f loat xxc , f loat yyc , f loat aa , f loat bb) :

xc ( xxc ) , yc ( yyc ) , a ( aa ) , b (bb) {} ;

f loat xc ;

f loat yc ;

f loat a ;

f loat b ;

} ;

// NonhomogeniousEl l ipseObject phantom :

// a vec t o r o f e l l i p s e s f o r a convex o b j e c t ;

// the l a s t e lement o f v must be the boundary e l l i p s e ;

// i f an e l l i p s e i s i n s i d e another e l l i p s e than the

// sma l l e r one (on the i n s i d e ) must come be f o r e the

// b i g g e r one in the E vec t o r

c l a s s neo {

pub l i c :

neo ( vector<E l l i p s e> e , vector<f loat> r ) : E( e ) , r sp ( r ) {} ;

vector<E l l i p s e> E;

vector<f loat> rsp ;
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} ;

neo CreateDefaultNeo ( f loat s ) {

vector<E l l i p s e> E;

vector<f loat> rsp ;

E l l i p s e e1 ( s ∗0 , s ∗0 , s ∗70 , s ∗90 ) ;

E l l i p s e e2 ( s ∗0 , s ∗85 , s ∗10 , s ∗ 2 . 5 ) ;

E l l i p s e e3 ( s ∗0 , s ∗0 , s ∗60 , s ∗80 ) ;

E l l i p s e e4 ( s ∗20 , s ∗0 , s ∗10 , s ∗20 ) ;

E l l i p s e e5 ( s ∗−20, s ∗0 , s ∗10 , s ∗20 ) ;

E . push back ( e5 ) ;

E . push back ( e4 ) ;

E . push back ( e3 ) ;

E . push back ( e2 ) ;

E . push back ( e1 ) ;

r sp . push back ( 0 . 9 ) ; // v e n t r i c l e s

rsp . push back ( 0 . 9 ) ; // v e n t r i c l e s

rsp . push back ( 1 . 0 4 ) ; // bra in t i s s u e

rsp . push back ( 0 . 0 ) ; // a i r pocke t

rsp . push back ( 1 . 6 ) ; // s k u l l

return neo (E, rsp ) ;

}

c l a s s LPoint {

pub l i c :
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LPoint ( ) {

x=0;

y=0;

l =0;

}

LPoint ( f loat xx , f loat yy , int l l ) :

x ( xx ) , y ( yy ) , l ( l l ) {} ;

f loat x ;

f loat y ;

int l ;

} ;

f loat ca l cu l a t eTr i ang l eArea ( LPoint A, LPoint B,

LPoint C) {

f loat output=fabs ( (A. x∗(B. y−C. y)+B. x∗(C. y−A. y )

+C. x∗(A. y−B. y ) ) / 2 . 0 ) ;

return output ;

}

bool equa l f ( f loat a , f loat b) {

f loat t o l =0.00001;

i f ( a<b+t o l && a>b−t o l )

return t rue ;

else

return f a l s e ;
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}

bool I sPo i n t I nE l l i p s e ( f loat xc , f loat yc , f loat a , f loat b ,

f loat k , f loat h) {

f loat yup=h+b∗ s q r t (1.0−pow( xc−k , 2 ) / pow(a , 2 ) ) ;

f loat y lo=h−b∗ s q r t (1.0−pow( xc−k , 2 ) / pow(a , 2 ) ) ;

i f ( yc<=yup && yc>=ylo )

return t rue ;

else

return f a l s e ;

}

f loat FindRSPatPoint ( f loat x , f loat y , neo phant ) {

f loat RSP=0;

f loat xcPhan , ycPhan , aPhan , bPhan ;

for ( int i =0; i<phant .E . s i z e ( ) ; i++) {

xcPhan=phant .E [ i ] . xc ;

ycPhan=phant .E [ i ] . yc ;

aPhan=phant .E [ i ] . a ;

bPhan=phant .E [ i ] . b ;

i f ( I sPo i n t I nE l l i p s e (x , y , aPhan , bPhan , xcPhan , ycPhan ) ) {

RSP=phant . r sp [ i ] ;

return RSP;

}

}
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return RSP;

}

f loat FindRSPatPoint DefaultNeo ( f loat xc , f loat yc ) {

f loat RSP;

i f ( I sPo i n t I nE l l i p s e ( xc , yc ,10 ,20 ,−20 ,0) | |

I sPo i n t I nE l l i p s e ( xc , yc , 1 0 , 2 0 , 2 0 , 0 ) )

RSP=0.9 ;

else i f ( I sPo i n t I nE l l i p s e ( xc , yc , 6 0 , 8 0 , 0 , 0 ) ) {

RSP=1.04;

}

else i f ( I sPo i n t I nE l l i p s e ( xc , yc , 1 0 , 2 . 5 , 0 , 8 5 ) )

RSP=0;

else i f ( I sPo i n t I nE l l i p s e ( xc , yc , 7 0 , 9 0 , 0 , 0 ) )

RSP=1.6 ;

else

RSP=0;

return RSP;

}

// method==0 −−> centerPointMethod vs

// method==1 −−> Corner Point Averaging

f loat ∗ CreateNeoS l i ce ( neo phantom , int ypa r t i t i on s ,

int xpa r t i t i on s , f loat boxLength , f loat boxWidth ,

int method ) {
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int s i z eXt rue=xpa r t i t i o n s ∗ ypa r t i t i o n s ∗ s izeof ( f loat ) ;

f loat ∗Xtrue=( f loat ∗) mal loc ( s i z eXt rue ) ;

f loat y s h i f t=boxLength / 2 . 0 ;

f loat x s h i f t=boxWidth / 2 . 0 ;

f loat ystep=boxLength/ yp a r t i t i o n s ;

f loat xstep=boxWidth/ xpa r t i t i o n s ;

f loat x0 , x1 , x2 , x3 , x4 , y0 , y1 , y2 , y3 , y4 ;

f loat xc , yc ,RSP, temp0 , temp1 , temp2 , temp3 , temp4 ;

f loat xdot1l0 , xdot2l0 , xdot1l2 , xdot2l2 ,

ydot1l1 , ydot2l1 , ydot1l3 , ydot2 l3 ;

f loat base , rbase , he ight , rhe ight , area1 , area2 ;

f loat a , b ;

f loat voxelArea=xstep ∗ ystep ;

int counter1=0;

i f (method==0) { // centerPointMethod

for ( int i =0; i<ypa r t i t i o n s ; i++) {

for ( int j =0; j<xpa r t i t i o n s ; j++) {

x1=j ∗xstep−x s h i f t ;

x2=x1+xstep ;

y1=ysh i f t−i ∗ ystep ;

y2=y1−ystep ;

xc=(x1+x2 ) / 2 . 0 ;

yc=(y1+y2 ) / 2 . 0 ;
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RSP=FindRSPatPoint ( xc , yc , phantom ) ;

Xtrue [ i ∗ xpa r t i t i o n s+j ]=RSP;

}

}

}

else i f (method==1) { // corner po in t averag ing method

for ( int i =0; i<ypa r t i t i o n s ; i++) {

for ( int j =0; j<xpa r t i t i o n s ; j++) {

x1=j ∗xstep−x s h i f t ;

y1=ysh i f t−i ∗ ystep ;

x2=x1+xstep ;

y2=y1 ;

x3=x2 ;

y3=y1−ystep ;

x4=x1 ;

y4=y3 ;

temp1=FindRSPatPoint ( x1 , y1 , phantom ) ;

temp2=FindRSPatPoint ( x2 , y2 , phantom ) ;

temp3=FindRSPatPoint ( x3 , y3 , phantom ) ;

temp4=FindRSPatPoint ( x4 , y4 , phantom ) ;

RSP=(temp1+temp2+temp3+temp4 ) / 4 . 0 ;

Xtrue [ i ∗ xpa r t i t i o n s+j ]=RSP;

}
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}

}

else {

for ( int i =0; i<ypa r t i t i o n s ; i++) {

for ( int j =0; j<xpa r t i t i o n s ; j++) {

cout<< i << ” ” << j << endl ;

x0=j ∗xstep−x s h i f t ;

y0=ysh i f t−i ∗ ystep ;

x1=x0+xstep ;

y1=y0 ;

x2=x1 ;

y2=y0−ystep ;

x3=x0 ;

y3=y2 ;

temp0=FindRSPatPoint ( x0 , y0 , phantom ) ;

temp1=FindRSPatPoint ( x1 , y1 , phantom ) ;

temp2=FindRSPatPoint ( x2 , y2 , phantom ) ;

temp3=FindRSPatPoint ( x3 , y3 , phantom ) ;

i f ( e qua l f ( temp0 , temp1 ) && equa l f ( temp0 , temp2 )

&& equa l f ( temp0 , temp3 ) ) {

RSP=temp0 ;

Xtrue [ i ∗ xpa r t i t i o n s+j ]=RSP;

}
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else {

vector<LPoint> iP ; //P i s a temporary vec t o r

// to ho ld the i n t e r s e c t i o n po in t s o f the

// e l l i p s e s and the v o x e l s . I t shou ld be

// o f s i z e 2 , un l e s s more than 1 e l l i p s e

// i n t e r s e c t a s i n g l e voxe l , however we ’ l l

// keep the vo x e l s i z e sma l l enough to avoid

// t h i s . So i f the s i z e i s not 2 , use cen te r

// po in t method

for ( int k=0; k<phantom .E. s i z e ( ) ; k++) {

xc=phantom .E[ k ] . xc ;

yc=phantom .E[ k ] . yc ;

a=phantom .E[ k ] . a ;

b=phantom .E[ k ] . b ;

xdot1 l0=xc+a∗ s q r t (1−pow(y0−yc , 2 ) / pow(b , 2 ) ) ;

xdot2 l0=xc−a∗ s q r t (1−pow(y0−yc , 2 ) / pow(b , 2 ) ) ;

xdot1 l2=xc+a∗ s q r t (1−pow(y2−yc , 2 ) / pow(b , 2 ) ) ;

xdot2 l2=xc−a∗ s q r t (1−pow(y2−yc , 2 ) / pow(b , 2 ) ) ;

ydot1 l1=yc+b∗ s q r t (1−pow(x1−xc , 2 ) / pow(a , 2 ) ) ;

ydot2 l1=xc−b∗ s q r t (1−pow(x1−xc , 2 ) / pow(a , 2 ) ) ;

ydot1 l3=xc+b∗ s q r t (1−pow(x3−xc , 2 ) / pow(a , 2 ) ) ;

ydot2 l3=xc−b∗ s q r t (1−pow(x3−xc , 2 ) / pow(a , 2 ) ) ;

i f ( xdot1l0<x1 && xdot1l0>x0 &&
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1−pow(y0−yc , 2 ) / pow(b ,2)>0)

iP . push back ( LPoint ( xdot1l0 , y0 , 0 ) ) ;

i f ( xdot2l0<x1 && xdot2l0>x0 &&

1−pow(y0−yc , 2 ) / pow(b ,2)>0)

iP . push back ( LPoint ( xdot2l0 , y0 , 0 ) ) ;

i f ( xdot1l2<x1 && xdot1l2>x0 &&

1−pow(y2−yc , 2 ) / pow(b ,2)>0)

iP . push back ( LPoint ( xdot1l2 , y2 , 2 ) ) ;

i f ( xdot2l2<x1 && xdot2l2>x0 &&

1−pow(y2−yc , 2 ) / pow(b ,2)>0)

iP . push back ( LPoint ( xdot2l2 , y2 , 2 ) ) ;

i f ( ydot1l1<y0 && ydot1l1>y3 &&

1−pow(x1−xc , 2 ) / pow(a ,2)>0)

iP . push back ( LPoint ( x1 , ydot1l1 , 1 ) ) ;

i f ( ydot2l1<y0 && ydot2l1>y3 &&

1−pow(x1−xc , 2 ) / pow(a ,2)>0)

iP . push back ( LPoint ( x1 , ydot2l1 , 1 ) ) ;

i f ( ydot1l3<y0 && ydot1l3>y3 &&

1−pow(x3−xc , 2 ) / pow(a ,2)>0)

iP . push back ( LPoint ( x0 , ydot1l3 , 3 ) ) ;

i f ( ydot2l3<y0 && ydot2l3>y3 &&

1−pow(x3−xc , 2 ) / pow(a ,2)>0)

iP . push back ( LPoint ( x0 , ydot2l3 , 3 ) ) ;
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}

i f ( iP . s i z e ( ) !=2) { // center−point−method

xc=(x0+x1 )/ ( f loat ) 2 ;

yc=(y0+y3 )/ ( f loat ) 2 ;

RSP=FindRSPatPoint ( xc , yc , phantom ) ;

Xtrue [ i ∗ xpa r t i t i o n s+j ]=RSP;

}

else {

vector<LPoint> cP ; // corner po in t s

cP . push back ( LPoint ( x0 , y0 , −1)) ;

cP . push back ( LPoint ( x1 , y1 , −1)) ;

cP . push back ( LPoint ( x2 , y2 , −1)) ;

cP . push back ( LPoint ( x3 , y3 , −1)) ;

vector<LPoint> sP ; // shape po in t s

i f ( iP [ 0 ] . l>iP [ 1 ] . l ) {

LPoint tempLPoint=iP [ 0 ] ;

iP [0 ]= iP [ 1 ] ;

iP [1 ]= tempLPoint ;

}

int l a=iP [ 0 ] . l ;

int lb=iP [ 1 ] . l ;

sP . push back ( iP [ 0 ] ) ;

for ( int ind=la +1; ind<=lb ; ind++)
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sP . push back (cP [ ind ] ) ;

sP . push back ( iP [ 1 ] ) ;

i f ( sP . s i z e ()<3) { // center−point−method

xc=(x0+x1 )/ ( f loat ) 2 ;

yc=(y0+y3 )/ ( f loat ) 2 ;

RSP=FindRSPatPoint ( xc , yc , phantom ) ;

Xtrue [ i ∗ xpa r t i t i o n s+j ]=RSP;

counter1++;

}

else {

f loat area1=0;

int tempIndex=1;

for ( int s=0; s<sP . s i z e ()−2; s++) {

LPoint tempA=sP [ 0 ] ;

LPoint tempB=sP [ tempIndex ] ;

LPoint tempC=sP [ tempIndex+1] ;

area1+=ca l cu l a t eTr i ang l eArea (tempA , tempB ,

tempC ) ;

tempIndex++;

}

area2=voxelArea−area1 ;

RSP=(1.0/ voxelArea )∗ ( area1 ∗temp2+area2 ∗temp4 ) ;

Xtrue [ i ∗ xpa r t i t i o n s+j ]=RSP;
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}

}

}

}

}

}

return Xtrue ;

}

f loat ∗ CreateXtrueNeo3d ( neo MyNeo , int zparts , int yparts ,

int xparts , f loat boxLength , f loat boxWidth , int method ) {

f loat ∗ Neo2d=CreateNeoS l i ce (MyNeo , yparts , xparts ,

boxLength , boxWidth , method ) ;

f loat ∗ XtrueNeo3d=

( f loat ∗) mal loc ( zpa r t s ∗ yparts ∗ xparts ∗ s izeof ( f loat ) ) ;

for ( int k=0; k<zpar t s ; k++) {

for ( int i i =0; i i <yparts ∗ xparts ; i i ++) {

XtrueNeo3d [ k∗ yparts ∗ xparts+i i ]=Neo2d [ i i ] ;

}

}

f r e e (Neo2d ) ;

return XtrueNeo3d ;

}

92



Listing 2.2: pathCode

// proton h i s t o r y ob j e c t , cons tant chord l en g t h

c l a s s History2d {

pub l i c :

History2d ( vector<int> c , f loat w)

: co l Ind ( c ) , wepl (w) {} ;

vector<int> co l Ind ;

f loat wepl ;

} ;

// KnownHull i n d i c a t e s t ha t we i n t e r s e c t e d the proton path

// wi th the e l l i p s e boundary o f the neo phantom

History2d ∗ generateProtonPath2d KnownHull ( f loat theta ,

f loat ∗ Xtrue , int yparts , int xparts , f loat boxLength ,

f loat boxWidth , neo MyNeo , int pathOption , int s l i c e I n d e x ) {

int s t a r tCo l=s l i c e I n d e x ∗ yparts ∗ xparts ;

vector<int> co l Ind , nu l l v e c ;

f loat wepl=0;

int co l , l o c a lCo l ;

PointVec Pin , Pt , Pout ;

f loat thetaOut ;

f loat a=MyNeo .E[MyNeo .E. s i z e ( ) −1 ] . a ; // semi major xa x i s

// l en g t h o f outer e l l i p s e
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f loat b=MyNeo .E[MyNeo .E. s i z e ( ) −1 ] . b ; // semi minor yax i s . . .

f loat ystep=boxLength /( f loat ) ypart s ;

f loat xstep=boxWidth /( f loat ) xpart s ;

// the s h i f t s to cen te r the recon space

f loat y s h i f t=boxLength /2 ;

f loat x s h i f t=boxWidth /2 ;

f loat gantryRad=3000;

vector<PointVec3> scatParam=scat t e r ingParamete r s ( ) ;

PointVec P1( gantryRad∗ cos ( theta ) , gantryRad∗ s i n ( theta ) ) ;

PointVec v1 ( cos ( theta ) , s i n ( theta ) ) ;

PointVec v2(− s i n ( theta ) , cos ( theta ) ) ;

f loat varLat , covar iance , varAng ;

f loat d1=MyUniformRand ( ) ;

// c a l c u l a t e i n t e r s e c t i o n o f proton entry l i n e wi th e l l i p s e

PointVec P3(P1 . x+d1∗v2 . x , P1 . y+d1∗v2 . y ) ;

f loat m=v1 . y/v1 . x ; // s l o p e o f proton entry l i n e

f loat B=P3 . y−m∗P3 . x ; //y−i n t e r c e p t o f proton entry l i n e

// to c a l c u l a t e the entry po in t Pin :

// the i n t e r s e c t i o n t e s t o f l i n e and e l l i p s e −−> s o l v e f o r x

// in the quadra t i c equat ion : a lpha ∗xˆ2+be ta ∗x+gamma=0

f loat alpha=1/pow(a ,2)+pow(m/b , 2 ) ;

f loat beta=2∗m∗B/pow(b , 2 ) ;

f loat gamma=pow(B/b ,2)−1;
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f loat d i s c=pow( beta ,2)−4∗ alpha∗gamma; // d i s c r iminan t

i f ( d i sc<0 or equa l f ( d i sc , 0 ) ) {

// proton path missed the o b j e c t −> re turn b lank h i s t o r y

History2d ∗ T=new History2d ( nu l lvec , 0 ) ;

return T;

}

else {

f loat x1=(−beta+sq r t ( d i s c ) )/ (2∗ alpha ) ;

f loat x2=(−beta−s q r t ( d i s c ) )/ (2∗ alpha ) ;

f loat y1=m∗x1+B;

f loat y2=m∗x2+B;

f loat y11=b∗ s q r t (1−pow( x1/a , 2 ) ) ;

f loat y22=−b∗ s q r t (1−pow( x2/a , 2 ) ) ;

f loat norm1=normEu( PointVec ( x1 , y1 ) ,P3 ) ;

f loat norm2=normEu( PointVec ( x2 , y2 ) ,P3 ) ;

i f (norm1<norm2) {

Pin . s e t ( x1 , y1 ) ;

Pt . s e t ( x2 , y2 ) ;

}

else {

Pin . s e t ( x2 , y2 ) ;

Pt . s e t ( x1 , y1 ) ;

}
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// depth i s the d i s t ance proton t r a v e l e d through o b j e c t

//assuming i t moves in a s t r a i g h t l i n e

f loat depth=normEu(Pin , Pt ) ;

// the lookup t a b l e i s indexed by cm so d i v i d e by 10

// to conver t mm to cm

int index=c e i l ( depth /10 ) ;

i f ( index>20) index=20; // avoid seg f a u l t s

varLat=scatParam [ index ] . x ;

covar i ance=scatParam [ index ] . y ;

varAng=scatParam [ index ] . z ;

PointVec R2=generateJointRandNorm ( varLat , covar iance ,

varAng ) ;

f loat d2=R2 . x ; // e x i t i n g l a t e r a l d i sp lacement

f loat p s i=R2 . y ; // e x i t i n g angu lar d i sp lacement

// genera te temporary l i n e to i n t e r s e c t wi th e l l i p s e to

// f i nd Pout

PointVec P4(Pt . x+d2∗v2 . x , Pt . y+d2∗v2 . y ) ;

f loat m2=m; // s l o p e

f loat B2=P4 . y−m2∗P4 . x ; // i n t e r c e p t

// l i ne−e l l i p s e i n t e r e s e c t i o n quadra t i c c o e f f i c i e n t s

f loat alpha2=1/pow(a ,2)+pow(m2/b , 2 ) ;

f loat beta2=2∗m2∗B2/pow(b , 2 ) ;

f loat gamma2=pow(B2/b ,2)−1;
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f loat d i s c2=pow( beta2 ,2)−4∗ alpha2∗gamma2 ; // d i s c r iminan t

i f ( d i sc2 <0) { // very rare circumstance

History2d ∗ T=new History2d ( nu l lvec , 0 ) ;

return T;

}

else i f ( e qua l f ( d i sc2 , 0 ) ) {

f loat x21=−beta2 /(2∗ alpha2 ) ;

f loat y21=m2∗x21+B2 ;

Pout . s e t ( x21 , y21 ) ;

}

else {

f loat x21=(−beta2+sq r t ( d i s c 2 ) )/ (2∗ alpha2 ) ;

f loat x22=(−beta2−s q r t ( d i s c 2 ) )/ (2∗ alpha2 ) ;

f loat y21=m2∗x21+B2 ;

f loat y22=m2∗x22+B2 ;

f loat norm21=normEu( PointVec ( x21 , y21 ) ,P4 ) ;

f loat norm22=normEu( PointVec ( x22 , y22 ) ,P4 ) ;

i f ( norm21<norm22 )

Pout . s e t ( x21 , y21 ) ;

else

Pout . s e t ( x22 , y22 ) ;

}

// e x i t i n g ang l e r e l a t i v e to xy a x i s

97



thetaOut=theta+ps i ;

// c a l c u l a t e upper l e f t corner coord ina t e s o f the entry

// vox e l and e x i t v o x e l to f i nd xmin and ymin

f loat xin0=CalculateX0 ( Pin . x , xstep ) ;

f loat xout0=CalculateX0 (Pout . x , xstep ) ;

f loat xmin=min ( xin0 , xout0 ) ;

f loat xmax=max( xin0 , xout0 ) ;

i f ( pathOption==1) {// s t r a i g h t−l i n e between Pin and Pout

f loat ms=(Pout . y−Pin . y )/ ( Pout . x−Pin . x ) ; // s l o p e

f loat Bs=Pout . y−ms∗Pout . x ; //y−i n t e r c e p t

for ( f loat xx=xmin ; xx<xmax ; xx+=xstep ) {

f loat ys=ms∗xx+Bs ;

f loat y0=CalculateY0 ( ys , ystep ) ;

int i =( int ) ( ( y sh i f t−y0 )/ ystep ) ;

int j=( int ) ( ( x s h i f t+xx )/ xstep ) ;

// i f the s l o p e o f the l i n e i s g r ea t e r than 1 in abs

// va l then the l i n e w i l l i n t e r s e c t more v o x e l s above

// i ( i f p o s i t i v e s l o p e ) b e f o r e the next xx so need

// to mark a l l t hose v o x e l s by c a l c u l a t i n g y at the

// next xx

f loat ysnext=ms∗( xx+xstep)+Bs ;

f loat y0next=CalculateY0 ( ysnext , ystep ) ;

int i n ex t=( int ) ( ( y sh i f t−y0next )/ ystep ) ;
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i f ( i>=0 and inext>=0) {

for ( int i i=min ( i , i n ex t ) ; i i<=max( i , i n ex t ) ; i i ++) {

l o c a lCo l=i i ∗ xparts+j ;

i f (0< l o c a lCo l and loca lCo l<xparts ∗ yparts ) {

c o l=s ta r tCo l+l o c a lCo l ;

co l Ind . push back ( c o l ) ;

wepl+=Xtrue [ l o c a lCo l ] ;

}

}

}

}

}

else i f ( pathOption=2) { // cubic−s p l i n e

f loat theta In=theta ;

f loat c=theta In ∗(Pout . x−Pin . x)−(Pout . y−Pin . x ) ;

f loat d=−thetaOut ∗(Pout . x−Pin . x)−(Pout . y−Pin . y ) ;

for ( f loat xx=xmin ; xx<xmax ; xx+=xstep ) {

f loat t=(xx−Pin . x )/ ( Pout . x−Pin . x ) ;

f loat q=(1−t )∗Pin . y+t∗Pout . y+t∗(1− t )∗ ( c∗(1− t )+d∗ t ) ;

f loat y0=CalculateY0 (q , ystep ) ;

int i =( int ) ( ( y sh i f t−y0 )/ ystep ) ;

int j=( int ) ( ( x s h i f t+xx )/ xstep ) ;

f loat tnext=(xx+xstep−Pin . x )/ ( Pout . x−Pin . x ) ;
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f loat qnext=(1−tnext )∗Pin . y+tnext ∗Pout . y+tnext ∗

(1− tnext )∗ ( c∗(1− tnext )+d∗ tnext ) ;

f loat y0next=CalculateY0 ( qnext , ystep ) ;

int i n ex t=( int ) ( ( y sh i f t−y0next )/ ystep ) ;

i f ( i>=0 and inext>=0) {

for ( int i i=min ( i , i n ex t ) ; i i<=max( i , i n ex t ) ; i i ++) {

l o c a lCo l=i i ∗ xparts+j ;

i f (0<=lo ca lCo l and loca lCo l<xparts ∗ yparts ) {

c o l=s ta r tCo l+l o c a lCo l ;

co l Ind . push back ( c o l ) ;

wepl+=Xtrue [ l o c a lCo l ] ;

}

}

}

}

}

}

History2d ∗ T=new History2d ( co l Ind , wepl ) ;

return T;

}

Listing 2.3: bivGenCode

// each PointVec3 ( varLat , cov , VarAng)
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vector<PointVec3> s ca t t e r ingParamete r s ( ) {

vector<PointVec3> output ;

output . push back ( PointVec3 ( 0 , 0 , 0 ) ) ;

output . push back ( PointVec3 (0 . 00112 ,0 . 0001686 ,

3 .397∗pow(10 , −5)) ) ;

output . push back ( PointVec3 (0 . 009335 ,0 . 0007052 ,

7 .154∗pow(10 , −5)) ) ;

output . push back ( PointVec3 ( 0 . 0 324 , 0 . 0 01638 , 0 . 0 001117 ) ) ;

output . push back ( PointVec3 ( 0 . 0 7861 , 0 . 0 02992 , 0 . 0 001542 ) ) ;

output . push back ( PointVec3 ( 0 . 1 567 , 0 . 0 04793 , 0 . 0 001994 ) ) ;

output . push back ( PointVec3 ( 0 . 2 761 , 0 . 0 07067 , 0 . 0 002472 ) ) ;

output . push back ( PointVec3 ( 0 . 4 466 , 0 . 0 09843 , 0 . 0 002979 ) ) ;

output . push back ( PointVec3 ( 0 . 6 786 , 0 . 0 1315 , 0 . 0 003519 ) ) ;

output . push back ( PointVec3 ( 0 . 9 833 , 0 . 0 1703 , 0 . 0 004094 ) ) ;

output . push back ( PointVec3 ( 1 . 3 7 2 , 0 . 0 2 1 5 , 0 . 0 0 0 4709 ) ) ;

output . push back ( PointVec3 ( 1 . 8 5 9 , 0 . 0 2 663 , 0 . 0 0 05368 ) ) ;

output . push back ( PointVec3 ( 2 . 4 5 6 , 0 . 0 3 245 , 0 . 0 0 06078 ) ) ;

output . push back ( PointVec3 ( 3 . 1 7 8 , 0 . 0 3 902 , 0 . 0 0 06847 ) ) ;

output . push back ( PointVec3 ( 4 . 0 4 1 , 0 . 0 4 6 4 , 0 . 0 0 0 7683 ) ) ;

output . push back ( PointVec3 ( 5 . 0 6 3 , 0 . 0 5 467 , 0 . 0 0 08599 ) ) ;

output . push back ( PointVec3 ( 6 . 2 6 1 , 0 . 0 6 392 , 0 . 0 0 09611 ) ) ;

output . push back ( PointVec3 ( 7 . 6 5 8 , 0 . 0 7 4 25 , 0 . 0 0 1074 ) ) ;

output . push back ( PointVec3 ( 9 . 2 7 5 , 0 . 0 8 5 79 , 0 . 0 0 1201 ) ) ;
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output . push back ( PointVec3 ( 1 1 . 1 4 , 0 . 0 9 8 71 , 0 . 0 0 1347 ) ) ;

output . push back ( PointVec3 ( 1 3 . 2 8 , 0 . 1 1 3 2 , 0 . 0 0 1 5 1 8 ) ) ;

return output ;

}

// re turn uniform random number from [ 0 , 1 ]

f loat ran f ( ) {

return rand ()%1000001/( f loat )1000000 ;

}

// re turn uniform rv from [−125 ,125]

f loat MyUniformRand ( ) {

f loat rv=rand ()%1000001/( f loat )1000000 ;

rv=rv ∗250 . 0 ; // s c a l e rv to be in [ 0 , 250 ]

rv=rv −125.0; // s h i f t rv to be in [−125 ,125]

return rv ;

}

// Marsag l ia Polar Method ˜ modi f i ed from Box−Muller

// to take 2 uniform rvs and transform them in to

// 2 independent s tandard normal rv s

PointVec generate2RandStdNorm ( ) {

f loat u , v , x , y , s , t ;
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s =1.0 ;

while ( s>=1.0 or equa l f ( s , 0 ) ) {

u=2.0∗ ran f ( ) −1 .0 ;

v=2.0∗ ran f ( ) −1 .0 ;

s=u∗u+v∗v ;

}

t=sq r t ((−2.0∗ l og ( s ) )/ s ) ;

x=u∗ t ;

y=v∗ t ;

return PointVec (x , y ) ;

}

// hard coded c a l c u l a t i o n o f determinant

f loat Determinant3x3 ( f loat ∗ A) {

f loat d=A[ 0 ] ∗ (A[ 4 ] ∗A[8]+A[ 5 ] ∗A[ 7 ] )

−A[ 1 ] ∗ (A[ 3 ] ∗A[8]+A[ 5 ] ∗A[ 6 ] )

+A[ 2 ] ∗ (A[ 3 ] ∗A[7]+A[ 4 ] ∗A[ 6 ] ) ;

return d ;

}

// s o l v e l i n e a r 3x3 system of equa t i ons Ax=b

f loat ∗ CramerSolve3x3 ( f loat ∗ A, f loat ∗ b) {

f loat ∗ output=( f loat ∗) mal loc (3∗ s izeof ( f loat ) ) ;
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f loat detA=Determinant3x3 (A) ;

i f ( detA==0) {

cout<<” e r r o r : ze ro determinant f o r J”<<endl ;

output [ 0 ]=0 ;

output [ 1 ]=0 ;

output [ 2 ]=0 ;

return output ;

}

f loat ∗ tempM=( f loat ∗) mal loc (9∗ s izeof ( f loat ) ) ;

for ( int i =0; i <9; i++)

tempM[ i ]=A[ i ] ;

// c a l c u l a t e the x o f x=(x , y , z )

tempM[0]=b [ 0 ] ;

tempM[3]=b [ 1 ] ;

tempM[6]=b [ 2 ] ;

f loat x=Determinant3x3 (tempM)/detA ;

tempM[0]=A[ 0 ] ;

tempM[3]=A[ 3 ] ;

tempM[6]=A[ 6 ] ;

// c a l c u l a t e y

tempM[1]=b [ 0 ] ;

tempM[4]=b [ 1 ] ;

tempM[7]=b [ 2 ] ;
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f loat y=Determinant3x3 (tempM)/detA ;

tempM[1]=A[ 1 ] ;

tempM[4]=A[ 4 ] ;

tempM[7]=A[ 7 ] ;

// c a l c u l a t e z

tempM[2]=b [ 0 ] ;

tempM[5]=b [ 1 ] ;

tempM[8]=b [ 2 ] ;

f loat z=Determinant3x3 (tempM)/detA ;

output [0 ]=x ;

output [1 ]=y ;

output [2 ]= z ;

return output ;

}

// F i s v e c t o r f unc t i on f o r non l inear system

// o f equat ions , t h i s f unc t i on re turns −F

// which i s needed in newton method

// v = ( var1 , cov , var2 )

f loat ∗ MyF( f loat ∗x , f loat ∗ v ) {

f loat ∗ F=( f loat ∗) mal loc (3∗ s izeof ( f loat ) ) ;

F[0]=−(x [ 0 ] ∗ x [0 ]+x [ 1 ] ∗ x [1]−v [ 0 ] ) ;

F[1]=−(x [ 1 ] ∗ x [1 ]+x [ 2 ] ∗ x [2]−v [ 2 ] ) ;
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F[2]=−(x [ 0 ] ∗ x [1 ]+x [ 1 ] ∗ x [2]−v [ 1 ] ) ;

return F;

}

// hard coded c a l c u l a t i o n o f the jacob ian

// f o r the non l inear system of equat ion to

// s o l v e f o r the e n t r i e s in matrix to

// mu l t i p l y to the vec t o r o f s t d norms to

// ge t the j o i n t norms

f loat ∗ MyJacobian ( f loat ∗ x ) {

f loat ∗ J=( f loat ∗) mal loc (9∗ s izeof ( f loat ) ) ;

J [0 ]=2∗x [ 0 ] ;

J [1 ]=2∗x [ 1 ] ;

J [ 2 ]=0 ;

J [ 3 ]=0 ;

J [4 ]=2∗x [ 1 ] ;

J [5 ]=2∗x [ 2 ] ;

J [6 ]=x [ 1 ] ;

J [7 ]=x [0 ]+x [ 2 ] ;

J [8 ]=x [ 1 ] ;

return J ;

}
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// J˜ jacob ian o f F, v i s needed to c a l c u l a t e F

// x˜ s o l u t i o n vec t o r

f loat ∗ NewtonNonlinearSysMethod ( f loat ∗ v ) {

f loat ∗J ,∗F,∗ s ;

f loat ∗ x=( f loat ∗) mal loc (3∗ s izeof ( f loat ) ) ;

f loat ∗ xprev ious=( f loat ∗) mal loc (3∗ s izeof ( f loat ) ) ;

x [ 0 ]=10 ; x [ 1 ]=0 . 1 ; x [ 2 ]=0 . 0 1 ; // i n t i t i a l x guess

for ( int k=0; k<20; k++) { //20 i t e r a t i o n s

J=MyJacobian (x ) ; // 3x3 jacob ian

F=MyF(x , v ) ; // re turns 3x1 vec t o r

// s o l v e Js=−f f o r s us ing Cramer

s=CramerSolve3x3 (J ,F ) ;

x [0 ]=x [0 ]+ s [ 0 ] ;

x [1 ]=x [1 ]+ s [ 1 ] ;

x [2 ]=x [2 ]+ s [ 2 ] ;

f r e e ( J ) ; f r e e (F ) ; f r e e ( s ) ;

}

return x ;

}

PointVec generateJointRandNorm ( f loat var1 , f loat cov , f loat var2 ) {

PointVec U=generate2RandStdNorm ( ) ; ;

f loat ∗ v=( f loat ∗) mal loc (3∗ s izeof ( f loat ) ) ;
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v [0 ]= var1 ; v [1 ]= cov ; v [2 ]= var2 ;

f loat ∗ temp=NewtonNonlinearSysMethod (v ) ;

PointVec X;

X. x=temp [ 0 ] ∗U. x+temp [ 1 ] ∗U. y ;

X. y=temp [ 1 ] ∗U. x+temp [ 2 ] ∗U. y ;

f r e e ( v ) ; f r e e ( temp ) ;

return X;

}
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APPENDIX C

RECONSTRUCTION CODE
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Listing 3.4: osartCode

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗

In s t ep1 we as s i gn each thread to a row in the b l o c k and do

p a r a l l e l p r o j e c t i o n s and in doing so we c a l c u l a t e r e s i d u a l

and s c a l e every element by i t s appropr ia t e row s c a l a r ˜

res /rowSum . Therefore we only need to do column sum in the

update s t ep so row indexes do not matter . And so we can

so r t scaledA and co l Ind by the va l u e s in ColInd wi thout

concern f o r r e c a l c u l a t i n g the va l u e s in rowPtr .

∗/

g l o b a l void osartCsrCscStep1Ker ( f loat ∗ scaledA ,

int ∗ co l Ind , int ∗rowPtr , f loat ∗B, f loat ∗X, int lengthAsub ,

int lengthA , int id ) {

int o sa r tB lkS ta r t=id ∗ lengthAsub ;

int osartBlkEnd=osa r tB lkS ta r t+lengthAsub ;

int tx=threadIdx . x ;

int bx=blockIdx . x ;

int rowBegin , rowEnd ,Row, startRow ;

int tota lThreads=gridDim . x∗blockDim . x ;

int localRow=bx∗blockDim . x+tx ;
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f loat answer , res , rowSum ;

for ( int m=0; m<c e i l ( lengthAsub /( f loat ) tota lThreads ) ;

m++) {

startRow=osa r tB lkS ta r t+m∗ tota lThreads ;

Row=startRow+localRow ;

i f (Row<lengthA and Row<osartBlkEnd ) {

answer=0;

rowBegin=rowPtr [Row ] ;

rowEnd=rowPtr [Row+1] ;

rowSum=rowEnd−rowBegin ;

for ( int j j=rowBegin ; j j<rowEnd ; j j++)

answer+=X[ co l Ind [ j j ] ] ;

r e s=B[Row]−answer ;

//now s c a l e each row in to scaledA

for ( int j j=rowBegin ; j j<rowEnd ; j j++)

scaledA [ j j ]= r e s /rowSum ;

}

}

}

g l o b a l void osartCsrCscSetupKer (

f loat ∗ sortedColScaledASmal l , f loat ∗ scaledA ,

int ∗ sortedColOrderSmal l , int h i t s InBlock , f loat ∗ X) {

int s tar t IndexSmal l , IndexSmall ;
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int tota lThreads=gridDim . x∗blockDim . x ;

int l o ca l IndexSma l l=blockIdx . x∗blockDim . x+threadIdx . x ;

for ( int m=0; m<c e i l ( h i t s InB lock /( f loat ) tota lThreads ) ;

m++) {

s ta r t IndexSmal l=m∗ tota lThreads ;

IndexSmall=sta r t IndexSmal l+loca l IndexSma l l ;

i f ( IndexSmall<h i t s InB lock )

sortedColScaledASmal l [ IndexSmall ]=

scaledA [ sortedColOrderSmal l [ IndexSmall ] ] ;

}

}

g l o b a l void osartCsrCscUpdateKer ( f loat ∗X,

f loat ∗ sortedColScaledASmal l , int ∗ co lPtrSmal l ,

int widthA , f loat lambda ) {

int tx=threadIdx . x ;

int bx=blockIdx . x ;

int colBegin , colEnd , Col , s t a r tCo l ;

int tota lThreads=gridDim . x∗blockDim . x ;

int l o c a lCo l=bx∗blockDim . x+tx ;

f loat answer , colSum ;

for ( int m=0; m<c e i l (widthA/( f loat ) tota lThreads ) ; m++) {

answer=0;

s t a r tCo l=m∗ tota lThreads ;
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Col=s ta r tCo l+l o c a lCo l ;

i f (Col<widthA ) {

answer=0;

co lBeg in=co lPtrSmal l [ Col ] ;

colEnd=co lPtrSmal l [ Col +1] ;

colSum=colEnd−co lBeg in ;

for ( int i i=co lBeg in ; i i <colEnd ; i i ++)

answer+=sortedColScaledASmal l [ i i ] ;

i f ( colSum !=0)

X[ Col]+=answer∗ lambda/colSum ;

}

}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

extern ”C” void osar t CsrCsc ( f loat ∗X, int ∗ co l Ind ,

int ∗rowPtr , f loat ∗B, f loat ∗ scaledA ,

vector<ColOrderBlock∗> C, int lengthA , int lengthAsub ,

int widthA , int t o t a lH i t s , f loat lambda , int i t e r ) {

int s izeX=widthA∗ s izeof ( f loat ) ;

int s i z e c o l I n d=t o t a lH i t s ∗ s izeof ( int ) ;

int s i ze rowPtr=(lengthA+1)∗ s izeof ( int ) ;

int s i zeB=lengthA∗ s izeof ( f loat ) ;
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int s i z e s c a l edA=to t a lH i t s ∗ s izeof ( f loat ) ;

int s i z e c o lP t rSma l l=(widthA+1)∗ s izeof ( f loat ) ;

f loat ∗Xd,∗Bd,∗ scaledAd ,∗ sortedColScaledASmal ld ;

int ∗ colIndd ,∗ rowPtrd ,∗ colPtrSmal ld , h i t s InB lock ;

cudaMalloc ( ( void∗∗)& Xd, s izeX ) ;

cudaMemcpy(Xd,X, sizeX , cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void∗∗)& colIndd , s i z e c o l I n d ) ;

cudaMemcpy( colIndd , co l Ind , s i z e c o l I nd ,

cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void∗∗)& rowPtrd , s i ze rowPtr ) ;

cudaMemcpy( rowPtrd , rowPtr , s izerowPtr ,

cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void∗∗)& Bd, s i zeB ) ;

cudaMemcpy(Bd ,B, s izeB , cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void∗∗)& scaledAd , s i z e s c a l edA ) ;

for ( int k=1; k<=i t e r ; k++) {

for ( int bid=0; bid< c e i l ( lengthA /( f loat ) lengthAsub ) ;

bid++) {

osartCsrCscStep1Ker<<<GRID SIZE ,BLOCK SIZE>>>(scaledAd ,

colIndd , rowPtrd ,Bd ,Xd, lengthAsub , lengthA , bid ) ;

h i t s InB lock=C[ bid]−>sortedColOrder . s i z e ( ) ;

cudaMalloc ( ( void∗∗)& sortedColScaledASmalld ,

h i t s InB lock ∗ s izeof ( f loat ) ) ;
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int∗ co lPtrSmal l=CopyVecToArray (C[ bid]−>co lPt r ) ;

cudaMalloc ( ( void∗∗)& colPtrSmal ld , s i z e c o lP t rSma l l ) ;

cudaMemcpy( colPtrSmal ld , co lPtrSmal l , s i z e co lPt rSma l l ,

cudaMemcpyHostToDevice ) ;

int∗ sortedColOrderSmal l=

CopyVecToArray (C[ bid]−>sortedColOrder ) ;

int∗ sortedColOrderSmal ld ;

cudaMalloc ( ( void∗∗)& sortedColOrderSmalld ,

h i t s InB lock ∗ s izeof ( int ) ) ;

cudaMemcpy( sortedColOrderSmalld , sortedColOrderSmal l ,

h i t s InB lock ∗ s izeof ( int ) , cudaMemcpyHostToDevice ) ;

osartCsrCscSetupKer<<<GRID SIZE ,BLOCK SIZE>>>

( sortedColScaledASmalld , scaledAd , sortedColOrderSmalld ,

h i t s InBlock ,Xd ) ;

osartCsrCscUpdateKer<<<GRID SIZE ,BLOCK SIZE>>>(Xd,

sortedColScaledASmalld , colPtrSmal ld , widthA , lambda ) ;

cudaFree ( co lPtrSmal ld ) ;

cudaFree ( sortedColOrderSmal ld ) ;

cudaFree ( sortedColScaledASmal ld ) ;

f r e eAr ray I ( co lPtrSmal l ) ;

f r e eAr ray I ( sortedColOrderSmal l ) ;

}

}
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cudaMemcpy(X,Xd, sizeX , cudaMemcpyDeviceToHost ) ;

cudaFree (Xd ) ; cudaFree ( co l Indd ) ;

cudaFree ( rowPtrd ) ; cudaFree (Bd ) ;

}

c l a s s ColOrderBlock {

pub l i c :

ColOrderBlock ( vector<int> s , vector<int> p , int i ) :

sortedColOrder ( s ) , co lPt r (p ) , AsubId ( i ) {} ;

vector<int> sortedColOrder ;

vector<int> co lPt r ;

int AsubId ;

} ;

Listing 3.5: sapCode

//Copy the curren t x−vec t o r to every row o f tempY

// ( g l o b a l−mem) . tempY has a row to ho ld the update v ec t o r f o r

// each s t r i n g

g l o b a l void setTempY( f loat ∗ tempY , f loat ∗ X, int M,

int widthA ) {

int tx=threadIdx . x ;

int bx=blockIdx . x ;

int tota lThreads=gridDim . x∗blockDim . x ;
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int l o c a lCo l=bx∗blockDim . x+tx ;

int Col , s ta r tCo lGr id ;

for ( int m=0; m<c e i l (widthA/( f loat ) tota lThreads ) ; m++) {

s ta r tCo lGr id=m∗ tota lThreads ;

Col=star tCo lGr id+l o c a lCo l ;

i f (Col<widthA ) {

for ( int i =0; i<M; i++)

tempY [ i ∗widthA+Col ]=X[ Col ] ;

}

}

}

//A thread i s a s s i gned to a s t r i n g , and p r o j e c t s

// s e q u e n t i a l l y on a l l the rows wi th in i t s s t r i n g . Af ter

// p r o j e c t i n g the l a s t row o f i t s s t r i n g each thread wr i t e s

// i t s update v ec t o r to i t s c o r r e c t row in tempY

g l o b a l void sapProjectKer ( f loat ∗ tempY , int∗ co l Ind ,

int∗ rowPtr , f loat ∗ B, int lengthA , int widthA , int M,

f loat lambda ) {

int gtx=blockIdx . x∗blockDim . x+threadIdx . x ; // g l o b a l thread

// index

i f ( gtx<M) {

// threadRange ˜ number o f rows in a s t r i n g

int threadRange=c e i l ( lengthA /( f loat )M) ;

117



int globalStartRow=gtx∗ threadRange ;

int Row, rowBegin , rowEnd ,RowSum;

f loat answer , Res ;

for ( int i =0; i<threadRange ; i++) {

Row=globalStartRow+i ;

i f (Row<lengthA ) {

answer=0;

rowBegin=rowPtr [Row ] ;

rowEnd=rowPtr [Row+1] ;

RowSum=rowEnd−rowBegin ;

for ( int j j=rowBegin ; j j<rowEnd ; j j++)

answer+=tempY [ gtx∗widthA+co l Ind [ j j ] ] ;

Res=B[Row]−answer ;

i f (RowSum!=0) {

for ( int j j=rowBegin ; j j<rowEnd ; j j++)

tempY [ gtx∗widthA+co l Ind [ j j ]]+=lambda∗Res/RowSum;

}

}

}

}

}

// Do a column sum of tempY in to X, averag ing them . Each

// element o f the we igh t v e c t o r e qua l s 1/M
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g l o b a l void sapAverageKer ( f loat ∗ X, f loat ∗ tempY , int M,

int widthA ) {

int tx=threadIdx . x ;

int bx=blockIdx . x ;

int tota lThreads=gridDim . x∗blockDim . x ;

f loat answer ;

int Col , s ta r tCo lGr id ;

int l o c a lCo l=bx∗blockDim . x+tx ;

for ( int m=0; m<c e i l (widthA/( f loat ) tota lThreads ) ; m++) {

s ta r tCo lGr id=m∗ tota lThreads ;

Col=star tCo lGr id+l o c a lCo l ;

i f (Col<widthA ) {

answer=0;

for ( int i =0; i<M; i++)

answer+=tempY [ i ∗widthA+Col ] ;

X[ Col ]=answer /( f loat )M;

}

}

}

extern ”C” void sapCsr ( f loat ∗ X, int∗ co l Ind , int∗ rowPtr ,

f loat ∗ B, f loat ∗ tempY , int lengthA , int widthA , int M,

int t o t a lH i t s , f loat lambda , int i t e r ) {
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int s izeX=widthA∗ s izeof ( f loat ) ;

int s i z e c o l I n d=t o t a lH i t s ∗ s izeof ( int ) ;

int s i ze rowPtr=(lengthA+1)∗ s izeof ( int ) ;

int s i zeB=lengthA∗ s izeof ( f loat ) ;

int sizetempY=M∗widthA∗ s izeof ( f loat ) ;

f loat ∗Xd,∗Bd,∗ tempYd ;

int ∗ colIndd ,∗ rowPtrd ;

cudaMalloc ( ( void∗∗)& Xd, s izeX ) ;

cudaMemcpy(Xd,X, sizeX , cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void∗∗)& colIndd , s i z e c o l I n d ) ;

cudaMemcpy( colIndd , co l Ind , s i z e c o l I nd ,

cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void∗∗)& rowPtrd , s i ze rowPtr ) ;

cudaMemcpy( rowPtrd , rowPtr , s izerowPtr ,

cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void∗∗)& Bd, s i zeB ) ;

cudaMemcpy(Bd ,B, s izeB , cudaMemcpyHostToDevice ) ;

cudaMalloc ( ( void∗∗)& tempYd , sizetempY ) ;

for ( int k=1; k<=i t e r ; k++) {

setTempY<<<GRID SIZE ,BLOCK SIZE>>>(tempYd ,Xd,M, widthA ) ;
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sapProjectKer<<<GRID SIZE ,BLOCK SIZE>>>(tempYd , colIndd ,

rowPtrd ,Bd , lengthA , widthA ,M, lambda ) ;

sapAverageKer<<<GRID SIZE ,BLOCK SIZE>>>(Xd, tempYd ,M,

widthA ) ;

}

cudaMemcpy(X,Xd, sizeX , cudaMemcpyDeviceToHost ) ;

cudaFree (Xd ) ; cudaFree ( co l Indd ) ; cudaFree ( rowPtrd ) ;

cudaFree (Bd ) ; cudaFree (tempYd ) ;

}
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APPENDIX D

GPGPU-TESLA M2090
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Listing 4.6: Tesla

Device 0 : ”Tes la M2090”

CUDA Driver Vers ion / Runtime Vers ion

5 .0 / 5 .0

CUDA Capab i l i ty Major/Minor ve r s i on number :

2 . 0

Total amount o f g l oba l memory :

5375 MBytes (5636554752 bytes )

(16) Mu l t i p ro c e s s o r s x ( 32) CUDA Cores /MP:

512 CUDA Cores

GPU Clock ra t e :

1301 MHz (1 . 30 GHz)

Memory Clock ra t e :

1848 Mhz

Memory Bus Width :

384−b i t

L2 Cache S i z e :

786432 bytes

Max Texture Dimension S i z e (x , y , z )

1D=(65536) , 2D=(65536 ,65535) , 3D=(2048 ,2048 ,2048)

Max Layered Texture S i z e (dim) x l a y e r s

1D=(16384) x 2048 , 2D=(16384 ,16384) x 2048

Total amount o f constant memory :

123



65536 bytes

Total amount o f shared memory per b lock :

49152 bytes

Total number o f r e g i s t e r s a v a i l a b l e per b lock :

32768

Warp s i z e :

32

Maximum number o f threads per mu l t i p r o c e s s o r :

1536

Maximum number o f threads per b lock :

1024

Maximum s i z e s o f each dimension o f a b lock :

1024 x 1024 x 64

Maximum s i z e s o f each dimension o f a g r id :

65535 x 65535 x 65535

Maximum memory p i t ch :

2147483647 bytes

Texture al ignment :

512 bytes

Concurrent copy and ke rne l execut ion :

Yes with 2 copy eng ine ( s )

Run time l im i t on k e rn e l s :

No
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In t eg ra t ed GPU shar ing Host Memory :

No

Support host page−l ocked memory mapping :

Yes

Alignment requirement for Sur f a c e s :

Yes

Device has ECC support :

Enabled

Device supports Un i f i ed Address ing (UVA) :

Yes

Device PCI Bus ID / PCI l o c a t i o n ID :

3 / 0

Compute Mode :

< Defau l t ( mu l t ip l e host threads can use : :

cudaSetDevice ( ) with dev i c e s imu l taneous ly ) >
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